The red mud accident in ajka (hungary): plant toxicity and trace metal bioavailability in red mud contaminated soil.

Environ Sci Technol

Department of Earth and Environmental Sciences, Division of Soil and Water Management, Katholieke Universiteit Leuven, Kasteelpark Arenberg, 20, 3001 Heverlee, Belgium.

Published: February 2011

The red mud accident of October 4, 2010, in Ajka (Hungary) contaminated a vast area with caustic, saline red mud (pH 12) that contains several toxic trace metals above soil limits. Red mud was characterized and its toxicity for plants was measured to evaluate the soil contamination risks. Red mud radioactivity (e.g., (238)U) is about 10-fold above soil background and previous assessments revealed that radiation risk is limited to indoor radon. The plant toxicity and trace metal availability was tested with mixtures of this red mud and a local noncontaminated soil up to a 16% dry weight fraction. Increasing red mud applications increased soil pH to maximally 8.3 and soil solution EC to 12 dS m(-1). Shoot yield of barley seedlings was affected by 25% at 5% red mud in soil and above. Red mud increased shoot Cu, Cr, Fe, and Ni concentrations; however, none of these exceed toxic limits reported elsewhere. Moreover, NaOH amended reference treatments showed similar yield reductions and similar changes in shoot composition. Foliar diagnostics suggest that Na (>1% in affected plants) is the prime cause of growth effects in red mud and in corresponding NaOH amended soils. Shoot Cd and Pb concentrations decreased by increasing applications or were unaffected. Leaching amended soils (3 pore volumes) did not completely remove the Na injury, likely because soil structure was deteriorated. The foliar composition and the NaOH reference experiment allow concluding that the Na salinity, not the trace metal contamination, is the main concern for this red mud in soil.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es104000mDOI Listing

Publication Analysis

Top Keywords

red mud
48
red
12
trace metal
12
mud
11
soil
10
mud accident
8
ajka hungary
8
plant toxicity
8
toxicity trace
8
soil red
8

Similar Publications

In this study, in order to solve the problems of resource utilization of electrolytic manganese residue and the destruction of natural resources by the over-exploitation of raw materials of traditional ceramics, electrolytic manganese residue (EMR), red mud (RM), and waste soil (WS) were used to prepare self-foaming expanded ceramsite (SEC), and different firing temperatures and four groups with different mixing ratios of these three raw materials were considered. Water absorption, porosity, heavy metal ion leaching, and compressive strength in the cylinder of SEC were evaluated. The chemical composition and microscopic morphology of SEC were investigated by XRD and SEM.

View Article and Find Full Text PDF

The use of reduction leaching in the production of alumina from bauxite by the Bayer process in order to decrease the amount of waste (bauxite residue) by adding elemental iron or aluminum, as well as Fe salts and organic compounds in the stage of high-pressure leaching, requires the purchase of relatively expensive reagents in large quantities. The aim of this study was to investigate the possibility of the use of electrolytically reduced bauxite residue (BR) as a substitute for these reagents. Reduced BR was obtained from Al-goethite containing BR using a bulk cathode in alkaline suspension.

View Article and Find Full Text PDF

The large stockpile and low utilization rate of red mud (RM) have caused an urgent need for large quantities of RM to be eliminated. In this study, multi-solid-waste synergistic RM-based composite cementitious materials (MS-RMCM) were prepared using RM as the primary material, combined with fly ash, silica fume, and quicklime. Orthogonal tests were conducted to investigate the effects of cementitious components on the mechanical properties.

View Article and Find Full Text PDF

In the context of evaluating the environmental impact of deep-sea tailing practices, we conducted a case study on the Bayer effluent released into the Mediterranean Sea by the French Gardanne alumina plant. This effluent results from the filtration of red mud, which has previously been discharged into the Cassidaigne canyon for 55 years. In 2015, regulatory changes permitted the released of a filtered effluent instead of the slurry.

View Article and Find Full Text PDF

Effect of cerium-zirconium oxide-loaded red mud on the selective catalytic reduction of NO in downhole diesel vehicle exhaust.

Environ Pollut

January 2025

College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong Province, China; State Key Laboratory of Mining Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China.

Red mud (RM), an iron oxide-rich solid waste, shows potential as a catalyst for selective catalytic reduction in denitrification processes. This study investigates the catalytic performance and mechanism of metal-modified RM in reducing NO from diesel vehicle exhaust. Acid-washed RM catalysts were impregnated with varying ratios of cerium (Ce) and zirconium (Zr).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!