Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Semi-competing risks data occur frequently in medical research when interest is in simultaneous modelling of two or more processes, one of which may censor the others. We consider the analysis of semi-competing risks data in the presence of interval-censoring and informative loss-to-followup. The work is motivated by a data set from the MRC UK Cognitive Function and Ageing Study, which we use to model two processes, cognitive impairment and death. Analysis is carried out using a multi-state model, which is an extension of that used by Siannis et al. (Statist. Med. 2007; 26:426–442) to model semi-competing risks data with exact transition times, to data which is interval-censored. Model parameters are estimated using maximum likelihood. The role of a sensitivity parameter k, which influences the nature of informative censoring, is explored.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3443364 | PMC |
http://dx.doi.org/10.1002/sim.4071 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!