The title compound, [ZnBr(2)(C(4)H(5)N(3))(2)], is a mononuclear complex in which the Zn(II) ions have distorted tetra-hedral coordination geometry. The Zn(II) ion binds to two N atoms from two different 2-amino-pyrimidine ligands and two bromide ions. N-H⋯N hydrogen bonds link the mol-ecules to form a one-dimensional supra-molecular structure. The supra-molecular chains are parallel to each other and N-H⋯Br hydrogen bonds link them into a two-dimensional network in the ac plane. Additionally, there are strong π-π inter-actions [centroid-centroid distance = 3.403 (3) Å].
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2961077 | PMC |
http://dx.doi.org/10.1107/S1600536808006466 | DOI Listing |
Nanomicro Lett
January 2025
Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
Amidst the ever-growing interest in high-mass-loading Li battery electrodes, a persistent challenge has been the insufficient continuity of their ion/electron conduction pathways. Here, we propose cellulose elementary fibrils (CEFs) as a class of deagglomerated binder for high-mass-loading electrodes. Derived from natural wood, CEF represents the most fundamental unit of cellulose with nanoscale diameter.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
February 2025
Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, Wrocław, 50-556, Poland.
Two new crystals of amantadinium salts were obtained from fenamic and tolfenamic acid. The salt of fenamic acid is a model compound for interaction analysis, while amantadinium tolfenamate is a composition of a drug used in the treatment of symptoms of Parkinsonism and as a nonsteroidal anti-inflammatory drug. The crystal structures were studied and a theoretical analysis of the hydrogen bonds and weak interactions was carried out using quantum theory of atoms in molecules (QTAIM) and non-covalent interaction (NCI) methods.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States.
The structure and dynamics of water at charged graphene interfaces fundamentally influence molecular responses to electric fields with implications for applications in energy storage, catalysis, and surface chemistry. Leveraging the realism of the MB-pol data-driven many-body potential and advanced path-integral quantum dynamics, we analyze the vibrational sum frequency generation (vSFG) spectrum of graphene/water interfaces under varying surface charges. Our quantum simulations reveal a distinctive dangling OH peak in the vSFG spectrum at neutral graphene, consistent with recent experimental findings yet markedly different from those of earlier studies.
View Article and Find Full Text PDFACS Nano
January 2025
School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.
Hydrogen evolution reaction and Zn dendrite growth, originating from high water activity and the adverse competition between the electrochemical kinetics and mass transfer, are the main constraints for the commercial applications of the aqueous zinc-based batteries. Herein, a weak H-bond interface with a suspension electrolyte is developed by adding TiO nanoparticles into the electrolytes. Owing to the strong polarity of Ti-O bonds in TiO, abundant hydroxyl functional groups are formed between the TiO active surface and aqueous environment, which can produce a weak H-bond interface by disrupting the initial H-bond networks between the water molecules, thereby accelerating the mass transfer of Zn and reducing the water activity.
View Article and Find Full Text PDFChembiochem
January 2025
Southeast University, School of Biological Science and Medical Engineering, 2 Sipailou, Xuanwu District, 210096, Nanjing, CHINA.
In recent years, antimicrobial peptides (AMPs) have emerged as a potent weapon against the growing threat of antibiotic resistance. Among AMPs, the ones containing tryptophan (W) and arginine (R) exhibit enhanced antimicrobial properties, benefiting from the unique physicochemical features of the two amino acids. Herein, we designed three hexapeptides, including WR, DWR (D-isomer), and RF, derived from the original sequence, RWWRWW-NH2 (RW).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!