In the title compound, [Mo(C(5)H(4)NO(2))(2)O(2)], the Mo(VI) atom exhibits a distorted octa-hedral coordination geometry formed by two terminal oxo ligands and two monoanionic O,O-bidentate pyridinone ligands. The two terminal oxo ligands lie in a cis arrangement, the ketonic O atoms of the pyridinone ligands are coordinated trans to the oxo ligands and the deprotonated hydroxyl O atoms are located trans to each other. The crystal structure contains inter-molecular N-H⋯O hydrogen bonds, C-H⋯O contacts and face-to-face π-π stacking inter-actions with an inter-planar separation of 3.25 (1) Å.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2960932PMC
http://dx.doi.org/10.1107/S1600536808007782DOI Listing

Publication Analysis

Top Keywords

oxo ligands
12
terminal oxo
8
pyridinone ligands
8
ligands
5
dioxidobis2-oxo-12-dihydropyridin-3-olato-molybdenumvi title
4
title compound
4
compound [moc5h4no22o2]
4
[moc5h4no22o2] movi
4
movi atom
4
atom exhibits
4

Similar Publications

Stabilization of  Alkyltin γ-Keggin Clusters by 2, 5-Dihydroxyterephthalate Ligands.

Chem Asian J

January 2025

China Three Gorges University, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, CHINA.

The Keggin clusters are one kind of the most representative molecular structures in the field of metal-oxo clusters. Although the different types of Keggin clusters with various components were reported, the research about γ-Keggin isomer remains less developed. This is ascribed to the difficulty in obtaining the stable pure γ-Keggin cluster for the structural isomerization.

View Article and Find Full Text PDF

The extent of coordination-induced bond weakening in aquo and hydroxo ligands bonded to a molybdenum(III) center complexed by a dianionic, pentadentate ligand system was probed by reacting the known complex (BPzPy)Mo(III)-NTf, , with degassed water or dry lithium hydroxide. The aquo adduct was not observed, but two LiNTf-stabilized hydroxo complexes were fully characterized. Computational and experimental work showed that the O-H bond in these complexes was significantly weakened (to ≈57 kcal mol), such that these compounds could be used to form the diamagnetic, neutral terminal molybdenum oxo complex (BPzPy)Mo(IV)O, , by hydrogen atom abstraction using the aryl oxyl reagent ArO• (Ar = 2,4,6-tri--butylphenyl).

View Article and Find Full Text PDF

The work establishes the salt of a tetra-cationic distibane, [LSb][CFSO] = [][OTf] (CFSO = OTf), stabilized by a bis(α-iminopyridine) ligand , defying the Coulombic repulsion. The synthetic approach involved a dehydrocoupling reaction when a mixture of and Sb(OTf) in a 1:1 ratio was treated with EtSiH/LiBEtH as the hydride source. Compound [][OTf] was also achieved from [LSbCl][OTf] as a precursor and using EtSiH.

View Article and Find Full Text PDF

Metal-Modified Zr-MOFs with AIE Ligands for Boosting CO Adsorption and Photoreduction.

Adv Mater

January 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.

The design and synthesis of metal-organic frameworks (MOFs) with outstanding light-harvesting and photoexcitation for artificial photocatalytic CO reduction is an attractive but challenging task. In this work, a novel aggregation-induced emission (AIE)-active ligand, tetraphenylpyrazine (PTTBPC) is proposed and utilized for the first time to construct a Zr-MOF photocatalyst via coordination with stable Zr-oxo clusters. Zr-MOF is featured by a scu topology with a two-fold interpenetrated framework, wherein the PTTBPC ligands enable strong light-harvesting and photoexcitation, while the Zr-oxo clusters facilitate CO adsorption and activation, as well as offer potential sites for further metal modification.

View Article and Find Full Text PDF

A mononuclear CoIII complex (1) of a bisamide-bisalkoxide donor ligand was synthesized and thoroughly characterized. The reaction of 1 with 0.5 equiv.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!