In the title compound, Na(+)·C(10)H(15)O(3) (-)·5H(2)O, the vertices of a distorted octa-hedron centred on the Na(+) cation are defined by six O atoms of water mol-ecules. The edge-sharing Na(H(2)O)(6) octa-hedra form a chain extended along the b-axis direction with adjacent Na(+) cations related by a twofold screw symmetry operation. The organic anion, which is not in close contact with the Na(+ )cation, is hydrogen-bonded to an uncoordinated water mol-ecule and to water mol-ecules of the Na(H(2)O)(6) octa-hedra.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2914966 | PMC |
http://dx.doi.org/10.1107/S1600536807063775 | DOI Listing |
Polymers (Basel)
January 2025
Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.
pH-responsive polyamidoamine (PAMAM) dendrimers are used as well-defined building blocks to design light-switchable nano-assemblies in solution. The complex interplay between the photoresponsive di-anionic azo dye Acid Yellow 38 (AY38) and the cationic PAMAM dendrimers of different generations is presented in this study. Electrostatic self-assembly involving secondary dipole-dipole interactions provides well-defined assemblies within a broad size range (10 nm-1 μm) with various shapes.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
(1) Background: Prostate cancer treatment efficacy is significantly influenced by androgen receptor (AR) signaling pathways. SLC22A3, a membrane transporter, has been linked to SNP rs9364554 risk loci for drug efficacy in prostate cancer. (2) Methods: We examined the location of SNP rs9364554 in the genome and utilized TCGA and other publicly available datasets to analyze the association of this SNP with transcription levels.
View Article and Find Full Text PDFPLoS One
January 2025
Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh.
The cation-proton antiporter (CPA) superfamily plays pivotal roles in regulating cellular ion and pH homeostasis in plants. To date, the regulatory functions of CPA family members in rice (Oryza sativa L.) have not been elucidated.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
February 2025
Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 2 Okólna, Wrocław, 50-422, Poland.
X-ray structural analysis of bis(guanidinium) disodium hypodiphosphate heptahydrate, (CHN)Na(PO)·7HO revealed close Na...
View Article and Find Full Text PDFActa Crystallogr C Struct Chem
February 2025
Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Piso 3, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina.
In this study, we present a new N-derivative of L-phenylalanine with 2-naphthaldehyde (PN), obtained by the Schiff base formation procedure and its subsequent reduction. This compound was crystallized as a zwitterion {2-[(naphthalen-2-ylmethyl)azaniumyl]-3-phenylpropanoate, CHNO}, as an anion in a sodium salt (catena-poly[[diaquasodium(I)-di-μ-aqua] 2-[(naphthalen-2-ylmethyl)amino]-3-phenylpropanoate monohydrate], {[Na(HO)](CHNO)·HO}), as a cation in a chloride salt [(1-carboxy-2-phenylethyl)(naphthalen-2-ylmethyl)azanium chloride acetic acid monosolvate, CHNO·Cl·CHCOOH], and additionally acting as a ligand in the pentacoordinated zinc compound aquabis{2-[(naphthalen-2-ylmethyl)amino]-3-phenylpropanoato-κO}zinc(II), [Zn(CHNO)(HO)] or [Zn(PN)(HO)], denoted (PN-Zn), with the amino acid derivative in its carboxylate form.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!