Background: Human African trypanosomiasis (HAT), also known as sleeping sickness, is a fatal parasitic disease caused by trypanosomes. Current treatment options for HAT are scarce, toxic, no longer effective, or very difficult to administer, in particular for the advanced, fatal stage of the disease (stage 2, chronic HAT). New safe, effective and easy-to-use treatments are urgently needed. Here it is shown that fexinidazole, a 2-substituted 5-nitroimidazole rediscovered by the Drugs for Neglected Diseases initiative (DNDi) after extensive compound mining efforts of more than 700 new and existing nitroheterocycles, could be a short-course, safe and effective oral treatment curing both acute and chronic HAT and that could be implemented at the primary health care level. To complete the preclinical development and meet the regulatory requirements before initiating human trials, the anti-parasitic properties and the pharmacokinetic, metabolic and toxicological profile of fexinidazole have been assessed.

Methods And Findings: Standard in vitro and in vivo anti-parasitic activity assays were conducted to assess drug efficacy in experimental models for HAT. In parallel, a full range of preclinical pharmacology and safety studies, as required by international regulatory guidelines before initiating human studies, have been conducted. Fexinidazole is moderately active in vitro against African trypanosomes (IC₅₀ against laboratory strains and recent clinical isolates ranged between 0.16 and 0.93 µg/mL) and oral administration of fexinidazole at doses of 100 mg/kg/day for 4 days or 200 mg/kg/day for 5 days cured mice with acute and chronic infection respectively, the latter being a model for the advanced and fatal stage of the disease when parasites have disseminated into the brain. In laboratory animals, fexinidazole is well absorbed after oral administration and readily distributes throughout the body, including the brain. The absolute bioavailability of oral fexinidazole was 41% in mice, 30% in rats, and 10% in dogs. Furthermore, fexinidazole is rapidly metabolised in vivo to at least two biologically active metabolites (a sulfoxide and a sulfone derivative) that likely account for a significant portion of the therapeutic effect. Key pharmacokinetic parameter after oral absorption in mice for fexinidazole and its sulfoxide and sulfone metabolites are a C(max) of 500, 14171 and 13651 ng/mL respectively, and an AUC₀₋₂₄ of 424, 45031 and 96286 h.ng/mL respectively. Essentially similar PK profiles were observed in rats and dogs. Toxicology studies (including safety pharmacology and 4-weeks repeated-dose toxicokinetics in rat and dog) have shown that fexinidazole is well tolerated. The No Observed Adverse Event Levels in the 4-weeks repeated dose toxicity studies in rats and dogs was 200 mg/kg/day in both species, with no issues of concern identified for doses up to 800 mg/kg/day. While fexinidazole, like many nitroheterocycles, is mutagenic in the Ames test due to bacterial specific metabolism, it is not genotoxic to mammalian cells in vitro or in vivo as assessed in an in vitro micronucleus test on human lymphocytes, an in vivo mouse bone marrow micronucleus test, and an ex vivo unscheduled DNA synthesis test in rats.

Conclusions: The results of the preclinical pharmacological and safety studies indicate that fexinidazole is a safe and effective oral drug candidate with no untoward effects that would preclude evaluation in man. The drug has entered first-in-human phase I studies in September 2009. Fexinidazole is the first new clinical drug candidate with the potential for treating advanced-stage sleeping sickness in thirty years.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3006138PMC
http://dx.doi.org/10.1371/journal.pntd.0000923DOI Listing

Publication Analysis

Top Keywords

drug candidate
12
sleeping sickness
12
safe effective
12
fexinidazole
12
advanced fatal
8
fatal stage
8
stage disease
8
chronic hat
8
effective oral
8
acute chronic
8

Similar Publications

Background: Focal segmental glomerulosclerosis (FSGS) and treatment-resistant minimal change disease (TR-MCD) are heterogeneous disorders with subgroups defined by distinct underlying mechanisms of glomerular and tubulointerstitial injury. A non-invasive urinary biomarker profile has been generated to identify patients with intra-kidney tumor necrosis factor (TNF)-activation and to predict response to anti-TNF treatment. We conducted this proof-of-concept, multi-center, open-label clinical trial to test the hypothesis that in patients with FSGS or TR-MCD and evidence of intra-renal TNF activation based on their biomarker profile, short-term treatment with adalimumab would reverse the elevated urinary excretion of MCP-1 and TIMP-1.

View Article and Find Full Text PDF

Widespread anthelmintic resistance has complicated the management of parasitic nematodes. Resistance to the benzimidazole (BZ) drug class is nearly ubiquitous in many species and is associated with mutations in beta-tubulin genes. However, mutations in beta-tubulin alone do not fully explain all BZ resistance.

View Article and Find Full Text PDF

Restenosis remains a long-standing limitation to effectively maintain functional blood flow after percutaneous transluminal angioplasty (PTA). While the use of drug-coated balloons (DCBs) containing antiproliferative drugs has improved patient outcomes, limited tissue transfer and poor therapeutic targeting capabilities contribute to off-target cytotoxicity, precluding adequate endothelial repair. In this work, a DCB system was designed and tested to achieve defined arterial delivery of an antirestenosis therapeutic candidate, cadherin-2 (N-cadherin) mimetic peptides (NCad), shown to selectively inhibit smooth muscle cell migration and limit intimal thickening in early animal PTA models.

View Article and Find Full Text PDF

Novel Protective Role for Gut Microbiota-derived Metabolite PAGln in Doxorubicin-induced Cardiotoxicity.

Cardiovasc Drugs Ther

January 2025

Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.

Purpose: Doxorubicin (Dox) is a classic anthracycline chemotherapy drug with cause cumulative and dose-dependent cardiotoxicity. This study aimed to investigate the potential role and molecular mechanism of phenylacetylglutamine (PAGln), a novel gut microbiota metabolite, in Dox-induced cardiotoxicity (DIC).

Methods: DIC models were established in vivo and in vitro, and a series of experiments were performed to verify the cardioprotective effect of PAGln.

View Article and Find Full Text PDF

A comprehensive analysis to reveal the underlying molecular mechanisms of natural killer cell in thyroid carcinoma based on single-cell RNA sequencing data.

Discov Oncol

January 2025

The Department of Experimental Medicine, Meishan City People's Hospital, No. 288, South Fourth Section, Dongpo Avenue, Meishan, 620000, Sichuan, China.

Background: Thyroid carcinoma (THCA) is the most common cancer of the endocrine system. Natural killer (NK) cell play an important role in tumor immune surveillance. The aim of this study was to explore the possible molecular mechanisms involved in NK cell in THCA to help the management and treatment of the disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!