Humanized mice are susceptible to Salmonella typhi infection.

Cell Mol Immunol

Institute for Infectious Disease Research, Centre for Gene Therapeutics, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.

Published: January 2011

Salmonella enterica serovar Typhi is a pathogen that only infects humans. Currently, there is no animal model for studying this pathogen. Recently, alymphoid RAG-2(-/-)/γ(c)(-/-) mice engrafted with human leukocytes, known as humanized mice, have been successfully utilized to develop experimental models for several human-specific viral infections, including HIV, human-like dengue fever and hepatitis C virus. Little is known about the usefulness and feasibility of the humanized mouse model for the study of human-specific bacterial pathogens, such as S. typhi. The aim of this study was to determine if Salmonella enterica serovar Typhi could establish productive infection in humanized mice. Here we report that intravenous inoculation of S. typhi into humanized mice, but not controls, established S. typhi infections. High bacterial loads were found in the liver, spleen, blood and bone marrow of mice reconstituted with human leukocytes, but not in the unreconstituted control mice. Importantly, S. typhi-infected humanized mice lost significant body weight, and some of the infected mice displayed neurological symptoms. Our data suggest, for the first time, that humanized mice are susceptible to S. typhi challenge and that this model can be utilized to study the pathogenesis of S. typhi to develop novel therapeutic strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4002987PMC
http://dx.doi.org/10.1038/cmi.2010.52DOI Listing

Publication Analysis

Top Keywords

humanized mice
24
mice
9
mice susceptible
8
typhi
8
salmonella enterica
8
enterica serovar
8
serovar typhi
8
human leukocytes
8
humanized
7
susceptible salmonella
4

Similar Publications

Background: Gastric cancer poses a major diagnostic and therapeutic challenge. Improved visualization of tumor margins and lymph node metastases with tumor-specific fluorescent markers could improve outcomes.

Methods: To establish orthotopic models of gastric cancer, one million cells of the human gastric cancer cell line, MKN45, were suspended in 50 μl of equal parts PBS and Matrigel and injected into the nude mouse stomach with a 29-gauge needle.

View Article and Find Full Text PDF

Hereditary transthyretin amyloidosis with polyneuropathy (ATTRv-PN) is a neurodegenerative disease caused by mutations in the gene encoding transthyretin (TTR). Despite amyloid deposition being pathognomonic for diagnosis, this pathology in nervous tissues cannot fully account for nerve degeneration, implying additional pathophysiology for neurodegeneration, which, however, has not yet been fully elucidated. In this study, neuroinflammation in ATTRv-PN was investigated by examining nerve morphometry, the blood-nerve barrier, and macrophage infiltration in the sural nerves of ATTRv-PN patients and the sciatic nerves of a complementary mouse system, i.

View Article and Find Full Text PDF

The ABC transporter A7 modulates neuroinflammation via NLRP3 inflammasome in Alzheimer's disease mice.

Alzheimers Res Ther

January 2025

Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo, NO-0372, Norway.

Background: Specific genetic variants in the ATP-binding cassette transporter A7 locus (ABCA7) are associated with an increased risk of Alzheimer's disease (AD). ABCA7 transports lipids from/across cell membranes, regulates Aβ peptide processing and clearance, and modulates microglial and T-cell functions to maintain immune homeostasis in the brain. During AD pathogenesis, neuroinflammation is one of the key mechanisms involved.

View Article and Find Full Text PDF

Targeted editing of CCL5 with CRISPR-Cas9 nanoparticles enhances breast cancer immunotherapy.

Apoptosis

January 2025

Department of Breast Cancer Surgery, Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, No. 519 Beijing East Road, Nanchang, Jiangxi, 330029, China.

Breast cancer remains one of the leading causes of cancer-related mortality among women worldwide. Immunotherapy, a promising therapeutic approach, often faces challenges due to the immunosuppressive tumor microenvironment. This study explores the innovative use of CRISPR-Cas9 technology in conjunction with FCPCV nanoparticles to target and edit the C-C Motif Chemokine Ligand 5 (CCL5) gene, aiming to improve the efficacy of breast cancer immunotherapy.

View Article and Find Full Text PDF

C3 glomerulopathy (C3G), a rare kidney disease caused by dysregulation of alternative pathway complement activation, is characterized by glomerular C3 deposition, proteinuria, crescentic glomerulonephritis, and renal failure. The anti-C5 monoclonal antibody (mAb) drug eculizumab has shown therapeutic effects in some but not all patients with C3G, and no approved therapy is currently available. Here, we developed and used a triple transgenic mouse model of fast progressing lethal C3G (FHm/mP-/-hFDKI/KI) to compare the therapeutic efficacy of a bifunctional anti-C5 mAb fused to a functional factor H (FH) fragment (short consensus repeat 1-5 [SCR1-5]) and the anti-C5 mAb itself.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!