Several microRNAs (miRNA) have been implicated in nasopharyngeal carcinoma (NPC), a highly invasive and metastatic cancer that is widely prevalent in southern China. In this study, we report that microRNA miR-26a is commonly downregulated in NPC specimens and NPC cell lines with important functional consequences. Ectopic expression of miR-26a dramatically suppressed cell proliferation and colony formation by inducing G(1)-phase cell-cycle arrest. We found that miR-26a strongly reduced the expression of EZH2 oncogene in NPC cells. Similar to the restoring miR-26 expression, EZH2 downregulation inhibited cell growth and cell-cycle progression, whereas EZH2 overexpression rescued the suppressive effect of miR-26a. Mechanistic investigations revealed that miR-26a suppressed the expression of c-myc, the cyclin D3 and E2, and the cyclin-dependent kinase CDK4 and CDK6 while enhancing the expression of CDK inhibitors p14(ARF) and p21(CIP1) in an EZH2-dependent manner. Interestingly, cyclin D2 was regulated by miR-26a but not by EZH2, revealing cyclin D2 as another direct yet mechanistically distinct target of miR-26a. In clinical specimens, EZH2 was widely overexpressed and its mRNA levels were inversely correlated with miR-26a expression. Taken together, our results indicate that miR-26a functions as a growth-suppressive miRNA in NPC, and that its suppressive effects are mediated chiefly by repressing EZH2 expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.CAN-10-1850 | DOI Listing |
J Mol Histol
January 2025
Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
This study investigated tempol action on genes and miRNAs related to NFκB pathway in androgen dependent or independent cell lines and in TRAMP model in the early and late-stages of cancer progression. A bioinformatic search was conducted to select the miRNAs to be measured based on the genes of interest from NFκB pathway. The miR-let-7c-5p, miR-26a-5p and miR-155-5p and five target genes (BCL2, BCL2L1, RELA, TNF, PTGS2) were chosen for RT-PCR and gene enrichment analyses.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
Artificial insemination (AI), as an efficient assisted reproduction technology, can help the livestock industry to improve livestock and poultry breeds, optimize production performance and improve reproductive efficiency. AI technology has been widely used in pig production in China, but boar fertility affects the effectiveness of AI, and more and more studies have shown that there are significant differences in the fertility of boars with similar semen quality indicators. Therefore, this study aimed to identify biomarker molecules that indicate the level of boar fertility, which is important for improving the efficiency of AI.
View Article and Find Full Text PDFDiabetol Metab Syndr
January 2025
Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
Background And Aims: Type 2 diabetes mellitus (T2DM) is usually complicated by cardiovascular diseases, hyperglycemia, and obesity, which worsen the outcome for the patient. Since recent evidence underlines the epigenetic role of glucagon-like peptide-1 receptor agonists (GLP-1RAs) in the management of these comorbidities, this study compared the effects of these agents, namely liraglutide, semaglutide, dulaglutide, and exenatide, on miRNA regulation in the management of T2DM.
Results: GLP-1RAs modify the expression of miRNAs involved in endothelial function, sugar metabolism, and adipogenesis, including but not limited to miR-27b, miR-130a, and miR-210.
Indian J Pathol Microbiol
October 2024
Department of Pathology, Sichuan Taikang Hospital, Chengdu, China.
Objective: To explore more and better liquid biopsy markers of exosomal microRNAs (exo-miRNAs) in renal interstitial fibrosis (RIF) and to preliminary investigate the biological functions and signaling pathways involved in these markers.
Materials And Methods: High-throughput miRNA sequencing was performed on blood and urine exo-miRNAs from three RIF patients and three healthy volunteers, and differential expression analysis and bioinformatic processing were performed.
Results: There were 13 differentially expressed exo-miRNA (DEexo-miRNA) between RIF and healthy blood, and 20 DEexo-miRNAs in urine.
Cells
December 2024
Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
Accurate normalization in miRNA studies requires the use of appropriate endogenous controls, which can vary significantly depending on cell types, treatments, and physiological or pathological conditions. This study aimed to identify suitable endogenous miRNA controls for neural progenitor cells (NPCs) and hippocampal tissues, both of which play crucial roles in neurogenesis. Using small RNA sequencing, we identified the most stable miRNAs in primary mouse NPCs and hippocampal tissues and accessed their stability using NormFinder analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!