A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of S1P on skeletal muscle repair/regeneration during eccentric contraction. | LitMetric

Skeletal muscle regeneration is severely compromised in the case of extended damage. The current challenge is to find factors capable of limiting muscle degeneration and/or potentiating the inherent regenerative program mediated by a specific type of myoblastic cells, the satellite cells. Recent studies from our groups and others have shown that the bioactive lipid, sphingosine 1-phosphate (S1P), promotes myoblast differentiation and exerts a trophic action on denervated skeletal muscle fibres. In the present study, we examined the effects of S1P on eccentric contraction (EC)-injured extensor digitorum longus muscle fibres and resident satellite cells. After EC, skeletal muscle showed evidence of structural and biochemical damage along with significant electrophysiological changes, i.e. reduced plasma membrane resistance and resting membrane potential and altered Na(+) and Ca(2+) current amplitude and kinetics. Treatment with exogenous S1P attenuated the EC-induced tissue damage, protecting skeletal muscle fibre from apoptosis, preserving satellite cell viability and affecting extracellular matrix remodelling, through the up-regulation of matrix metalloproteinase 9 (MMP-9) expression. S1P also promoted satellite cell renewal and differentiation in the damaged muscle. Notably, EC was associated with the activation of sphingosine kinase 1 (SphK1) and with increased endogenous S1P synthesis, further stressing the relevance of S1P in skeletal muscle protection and repair/regeneration. In line with this, the treatment with a selective SphK1 inhibitor during EC, caused an exacerbation of the muscle damage and attenuated MMP-9 expression. Together, these findings are in favour for a role of S1P in skeletal muscle healing and offer new clues for the identification of novel therapeutic approaches to counteract skeletal muscle damage and disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3822960PMC
http://dx.doi.org/10.1111/j.1582-4934.2010.01250.xDOI Listing

Publication Analysis

Top Keywords

skeletal muscle
32
s1p skeletal
12
muscle
12
effects s1p
8
skeletal
8
eccentric contraction
8
satellite cells
8
muscle fibres
8
satellite cell
8
mmp-9 expression
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!