A computer-aided interpretation approach is proposed to detect rheumatic arthritis (RA) in human finger joints using optical tomographic images. The image interpretation method employs a classification algorithm that makes use of a so-called self-organizing mapping scheme to classify fingers as either affected or unaffected by RA. Unlike in previous studies, this allows for combining multiple image features, such as minimum and maximum values of the absorption coefficient for identifying affected and not affected joints. Classification performances obtained by the proposed method were evaluated in terms of sensitivity, specificity, Youden index, and mutual information. Different methods (i.e., clinical diagnostics, ultrasound imaging, magnet resonance imaging, and inspection of optical tomographic images), were used to produce ground truth benchmarks to determine the performance of image interpretations. Using data from 100 finger joints, findings suggest that some parameter combinations lead to higher sensitivities, while others to higher specificities when compared to single parameter classifications employed in previous studies. Maximum performances are reached when combining the minimum/maximum ratio of the absorption coefficient and image variance. In this case, sensitivities and specificities over 0.9 can be achieved. These values are much higher than values obtained when only single parameter classifications were used, where sensitivities and specificities remained well below 0.8.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3017575PMC
http://dx.doi.org/10.1117/1.3516705DOI Listing

Publication Analysis

Top Keywords

optical tomographic
12
tomographic images
12
computer-aided interpretation
8
interpretation approach
8
finger joints
8
previous studies
8
absorption coefficient
8
single parameter
8
parameter classifications
8
sensitivities specificities
8

Similar Publications

Purpose: To determine whether corneal biomechanical parameters can predict ectasia progression.

Study Design: Retrospective observational study.

Methods: The baseline corneal biomechanical parameters of 64 eyes of 41 young patients (age, < 25 years at the first visit) who were diagnosed with keratoconus (KC) or suspected KC at Osaka University Hospital and followed up for more than two years were reviewed.

View Article and Find Full Text PDF

Keratoconus (KC) is a progressive corneal disorder resulting in severe visual impairment. We aimed to determine the prevalence and corneal tomographic characteristics of KC and keratoconus suspect (KCS) in a population-based study, and to construct discrimination models with or without corneal tomography. A total of 1,544 eyes (822 participants aged ≥35 years) were evaluated using data from the Yamagata Study (2015-2017).

View Article and Find Full Text PDF

This study assesses radiation doses in multi-slice computed tomography (CT) using epoxy resin and PMMA phantoms, focusing on the relationship between TAR (tissue air ratio) and kilovoltage peak (kVp). The research was conducted using a Hitachi Supria 16-slice CT scanner. An epoxy resin phantom was fabricated from commercially available materials, to simulate human tissue.

View Article and Find Full Text PDF

Purpose: To investigate different measures for corneal astigmatism in the context of reconstructed corneal astigmatism (recCP) as required to correct the pseudophakic eye, and to derive prediction models to map measured corneal astigmatism to recCP.

Methods: Retrospective single centre study of 509 eyes of 509 cataract patients with monofocal (MX60P) IOL. Corneal power measured with the IOLMaster 700 keratometry (IOLMK), and Galilei G4 keratometry (GK), total corneal power (TCP2), and Alpin's integrated front (CorT) and total corneal power (CorTTP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!