A new high-pressure-low-temperature cell was developed for in situ observations of gas hydrates by powder x-ray diffraction. The experimental setup allows investigating hydrate formation and dissociation as well as transformation processes between different hydrate crystal structures as a function of pressure, temperature, and feed gas composition. Due to a continuous gas flow, the composition of the gas phase is kept constant during the whole experiment. This is crucial for the formation of mixed hydrates formed from feed gas mixtures that contain one or more components in low concentrations. The pressure cell can be used in a pressure range between 0.1 and 4.0 MPa and a temperature range between 248 and 298 K. First results of time-resolved measurements of a mixed structure II CH(4) + iso-C(4)H(10) hydrate and a structure I CO(2) hydrate are presented.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3520465DOI Listing

Publication Analysis

Top Keywords

gas hydrates
8
hydrates powder
8
powder x-ray
8
x-ray diffraction
8
feed gas
8
gas
6
high-pressure cell
4
cell kinetic
4
kinetic studies
4
studies gas
4

Similar Publications

Gas-phase near-edge X-ray absorption mass spectrometry (NEXAMS) was employed at the carbon and oxygen K-edges to probe the influence of a single water molecule on the protonated phosphotyrosine molecule. The results of the photodissociation experiments revealed that the water molecule forms two bonds, with the phosphate group and another chemical group. By comparing the NEXAMS spectra at the carbon and oxygen K-edges with density functional theory calculations, we attributed the electronic transitions responsible for the observed resonances, especially the transitions due to the presence of the water molecule.

View Article and Find Full Text PDF

Hydrate formation in porous media with upward-migrating methane and its implications for the evolution of deep-sea cold seep ecosystems.

Sci Total Environ

January 2025

Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China. Electronic address:

Methane leaking from the deep seabed is a primary source of carbon and energy for various microorganisms, sustaining the evolution and productivity of cold seep ecosystems. However, the dynamics of methane hydrate formation under methane seepage conditions and potential impacts on the evolution of cold seep ecosystems remain unclear. This study investigated the dynamic formation characteristics of gas hydrates within cold seep sediments by simulating the methane leakage process.

View Article and Find Full Text PDF

Decompression sickness of medical personnel of a hyperbaric centre: A report of cases during 25 years of activity.

Int Marit Health

January 2025

National Centre for Hyperbaric Medicine, Institute of Maritime and Tropical Medicine in Gdynia, Medical University of Gdansk, Poland.

Medical hyperbaric sessions for Hyperbaric Oxygen Therapy, conducted at 2.4-2.5 ATA for 80 to 120 minutes, expose staff to increased risk of DCS due to the inhalation of compressed air, which increases gas solubility in body fluids as per Henry's Law.

View Article and Find Full Text PDF

Numerical simulation study on the influence of bend diameter rate on the flow characteristics of nature gas hydrate particles.

Sci Rep

December 2024

Jiangsu Key Laboratory of Oil-Gas Storage and Transportation Technology, Changzhou University, Changzhou, 213164, Jiangsu, China.

Bend pipe is a common part of long distance pipeline. There is very important to study the flow law of hydrate particles in the bend pipe, and pipeline design will be optimized. In addition, the efficiency and safety of pipeline gas transmission will be improved.

View Article and Find Full Text PDF

In the present study, we deposited buffer solutions containing hydrophobic (GA) fibrils onto highly oriented pyrolytic graphite (HOPG) and imaged the surfaces through atomic force microscopy (AFM). Within 3 h of applying ambient (nondegassed) buffers, we observed the formation of two-dimensional stripe-like domains on the HOPG surfaces surrounding the (GA) fibrils. However, these stripe domains did not form under degassed buffers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!