The constrained variational Hartree-Fock method for excited states of the same symmetry as the ground state [Chem. Phys. Lett. 287, 189 (1998)] is combined with the effective local potential (ELP) method [J. Chem. Phys. 125, 081104 (2006)] to generate Kohn-Sham-type exact-exchange potentials for singly excited states of many-electron systems. Illustrative examples include the three lowest (2)S states of the Li and Na atoms and the three lowest (3)S states of He and Be. For the systems studied, excited-state ELPs differ from the corresponding ground-state potentials in two respects: They are less negative and have small additional "bumps" in the outer electron region. The technique is general and can be used to approximate excited-state exchange-correlation potentials for other orbital-dependent functionals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3521492 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!