Adaptation of cells to new environments.

Wiley Interdiscip Rev Syst Biol Med

Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA.

Published: December 2011

The evolutionary success of an organism is a testament to its inherent capacity to keep pace with environmental conditions that change over short and long periods. Mechanisms underlying adaptive processes are being investigated with renewed interest and excitement. This revival is partly fueled by powerful technologies that can probe molecular phenomena at a systems scale. Such studies provide spectacular insight into the mechanisms of adaptation, including rewiring of regulatory networks via natural selection of horizontal gene transfers, gene duplication, deletion, readjustment of kinetic parameters, and myriad other genetic reorganizational events. Here, we discuss advances in prokaryotic systems biology from the perspective of evolutionary principles that have shaped regulatory networks for dynamic adaptation to environmental change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3081528PMC
http://dx.doi.org/10.1002/wsbm.136DOI Listing

Publication Analysis

Top Keywords

regulatory networks
8
adaptation cells
4
cells environments
4
environments evolutionary
4
evolutionary success
4
success organism
4
organism testament
4
testament inherent
4
inherent capacity
4
capacity pace
4

Similar Publications

Objective: To explore the association between smoking, genetic susceptibility and early menopause (EM) and clarify the potential mechanisms underlying this relationship.

Design: An observational and Transcriptome-wide association analysis (TWAS) study.

Setting: UK Biobank and public summary statistics.

View Article and Find Full Text PDF

Ankylosing Spondylitis (AS) and Systemic Sclerosis (SSc) are both autoimmune diseases, albeit with distinct anatomical targets. AS primarily affects the spine and sacroiliac joints, triggering inflammation and eventual fusion of the vertebrae. SSc predominantly impacts the skin and connective tissues, leading to skin fibrosis, thickening, and potential damage to vital organs such as the lungs, heart, and kidneys.

View Article and Find Full Text PDF

Background: It has been demonstrated that nintedanib can inhibit the proliferation of gastric cancer cells, but the specific mechanism of action is unclear.

Objective: Investigating the changes of key factors involved in gene transcription and post-transcriptional regulation during the process of treating gastric cancer with nintedanib.

Methods: In this study, we performed transcriptome sequencing on gastric cancer cell groups treated with nintedanib and control groups.

View Article and Find Full Text PDF

Background: Oral squamous cell carcinoma (OSCC) is an aggressive malignancy with poor prognosis. Neutrophil infiltration has been associated with unfavorable outcomes in OSCC, but the underlying molecular mechanisms remain unclear.

Methods: This study integrated single-cell transcriptomics (scRNA-seq) with bulk RNA-seq data to analyze neutrophil infiltration patterns in OSCC and identify key gene modules using weighted gene co-expression network analysis (hdWGCNA).

View Article and Find Full Text PDF

Competing endogenous RNAs network dysregulation in oral cancer: a multifaceted perspective on crosstalk and competition.

Cancer Cell Int

December 2024

Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.

Oral cancer progresses from asymptomatic to advanced stages, often involving cervical lymph node metastasis, resistance to chemotherapy, and an unfavorable prognosis. Clarifying its potential mechanisms is vital for developing effective theraputic strategies. Recent research suggests a substantial involvement of non-coding RNA (ncRNA) in the initiation and advancement of oral cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!