Background/aims: surgical closure or reconstruction is commonly used to treat wounds generated by Mohs micrographic surgeries (MMS) and staged melanoma excisions, which may result in contractures and scarring. The authors' objective was to determine the value of using gelatin sponges to promote secondary intention healing for surgical defects after MMS and staged melanoma excisions.

Methods: sixty-four surgeries from 54 predominantly elderly patients (median age=76 years) were treated with gelatin sponges to promote healing by secondary intention in this prospective investigation. Patients rated their satisfaction with outcomes on a scale of 1 (highly dissatisfied) to 5 (highly satisfied).

Results: in all patients, the wounds healed within four to 16 weeks (median=five weeks). Forty-five patients were highly satisfied with their results (mean score=4.9).

Conclusion: healing by secondary intention using gelatin sponges was associated with improved hemostasis, excellent cosmesis and a high level of patient satisfaction.

Download full-text PDF

Source

Publication Analysis

Top Keywords

gelatin sponges
16
staged melanoma
12
secondary intention
12
mohs micrographic
8
melanoma excisions
8
mms staged
8
sponges promote
8
healing secondary
8
gelatin
4
sponges mohs
4

Similar Publications

A self-elastic chitosan sponge reinforced with lauric acid-modified quaternized chitosan and attapulgite to treat noncompressible hemorrhage and facilitate wound healing.

Carbohydr Polym

March 2025

Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China. Electronic address:

The development of self-elastic sponges with enhanced hemostatic and antibacterial properties to treat noncompressible hemorrhage and facilitate wound healing remains challenging. Herein, we prepared a chitosan sponge reinforced with lauric acid-modified quaternized chitosan (LQC) and attapulgite, features a porous structure, high self-elasticity, and rapid shape recovery. The incorporation of LQC conferred the sponge with an enhanced capacity to promote the adhesion, aggregation, and activation of blood cells, and resistance to infection by Staphylococcus aureus, Escherichia coli, and Methicillin-resistant Staphylococcus aureus; the incorporation of attapulgite enhanced the hydrophilicity and mechanical strength of the sponge, and its ability to activate the intrinsic and extrinsic coagulation pathways.

View Article and Find Full Text PDF

The purpose of this case report is to examine the management of vestibular bone fenestration during alveolar socket preservation using the Periosteal Inhibition (PI) approach. Here, for the first time, the PI technique, which has been shown to be successful in maintaining intact cortical bone, is examined in the context of a bone defect. : After an atraumatic extraction of a damaged tooth, a vestibular bone fenestration was discovered in the 62-year-old male patient.

View Article and Find Full Text PDF

Objective We evaluated the outcomes of tympanic membrane regenerative treatment using gelatin sponge, recombinant basic fibroblast growth factor (bFGF), and fibrin glue at Yokosuka Kyosai Hospital. Methodology We enrolled a total of 42 patients with tympanic membrane perforations (TMPs) (44 ears; right:left = 21:23) that were treated using gelatin sponge, recombinant bFGF, and fibrin glue between July 2020 and December 2023 at Yokosuka Kyosai Hospital. TMP closure rates, improvement of hearing level, and complications were retrospectively included in the evaluation items.

View Article and Find Full Text PDF

The purpose of this systematic review and meta-analysis is to evaluate the safety and efficacy of anti-inflammatory-impregnated gelatin sponges in spine surgeries. Gelatin sponges are increasingly used as delivery vehicles for anti-inflammatory and analgesic drugs during spine surgeries. However, concerns about their safety and efficacy persist.

View Article and Find Full Text PDF

An Antibacterial Hemostasis Sponge of Gelatin/ε-Poly-L-Lysine Composite.

J Biomed Mater Res B Appl Biomater

January 2025

Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, P. R. China.

Massive bleeding and bacterial infection of wounds may be life-threatening or even lead to death. Nowadays, gelatin-based hemostatic sponges have been widely used, but gelatin is not antibacterial and has poor structural stability. In this study, we mixed an antibacterial polypeptide, ε-poly-L-lysine (EPL), into gelatin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!