Dental pain arises from exposed dentin following bacterial, chemical, or mechanical erosion of enamel and/or recession of gingiva. Thus, dentin tissue and more specifically patent dentinal tubules represent the first structure involved in dentin sensitivity. Interestingly, the architecture of dentin could allow for the transfer of information to the underlying dental pulp via odontoblasts (dentin-forming cells), via their apical extension bathed in the dentinal fluid running in the tubules, or via a dense network of trigeminal sensory axons intimately related to odontoblasts. Therefore, external stimuli causing dentinal fluid movements and odontoblasts and/or nerve complex responses may represent a unique mechanosensory system bringing a new role for odontoblasts as sensor cells. How cells sense signals and how the latter are transmitted to axons represent the main questions to be resolved. However, several lines of evidence have demonstrated that odontoblasts express mechano- and/or thermosensitive transient receptor potential ion channels (TRPV1, TRPV2, TRPV3, TRPV4, TRPM3, KCa, TREK-1) that are likely to sense heat and/or cold or movements of dentinal fluid within tubules. Added to this, voltage-gated sodium channels confer excitable properties of odontoblasts in vitro in response to injection of depolarizing currents. In vivo, sodium channels co-localize with nerve terminals at the apical pole of odontoblasts and correlate with the spatial distribution of stretch-activated KCa channels. This highlights the terminal web as the pivotal zone of the pulp/dentin complex for sensing external stimuli. Crosstalk between odontoblasts and axons may take place by the release of mediators in the gap space between odontoblasts and axons in view of evidence for nociception-transducing receptors on trigeminal afferent fibers and expression of putative effectors by odontoblasts. Finally, how axons are guided to the target cells and which kind of signaling molecules are involved is extensively discussed in this review.

Download full-text PDF

Source

Publication Analysis

Top Keywords

dentinal fluid
12
odontoblasts
11
dental pain
8
external stimuli
8
sodium channels
8
odontoblasts axons
8
axons
5
topical review
4
review dental
4
pain odontoblasts
4

Similar Publications

Introduction In their routine practice, dentists frequently encounter dentinal hypersensitivity, which is caused by the pulpal nerves' increased excitability due to fluid movement in the dentinal tubules. It is treated in-office using dentin desensitizers, which reduce hypersensitivity by obstructing the open tubules or desensitizing the free nerve endings present within the tubules. However, no substance or treatment plan has ever been proven to be the gold standard for the efficient treatment of dentinal hypersensitivity.

View Article and Find Full Text PDF

Background And Objectives: The purpose of this study was to evaluate the antimicrobial activity of methylene blue dye with 660-nm diode laser in cavity disinfection and to compare the total bacterial count in dentinal samples preexcavation, postexcavation, and postdisinfection. The study design was experimental in vivo.

Materials And Methods: Fifteen children aged 5-12 years with 15 primary molars requiring atraumatic restorative treatment (ART) were selected.

View Article and Find Full Text PDF

Nanoparticles Induced Biomimetic Remineralization of Acid-Etched Dentin.

J Dent (Shiraz)

December 2024

Dept. Conservative Dentistry and Endodontics, St.Joseph Dental College, Duggirala, Eluru, Andra Pradesh, India.

Statement Of The Problem: Dentin bonding with etch-and-rinse adhesives involves demineralizing the 5-8µm of the surface dentin to create micro space for resin infiltration. The presence of continuous fluid movement in dentin tubules and positive pulpal pressure prevents complete water replacement by resin monomers. This results in areas of demineralized dentin, which contain collagen fibers without resin infiltration.

View Article and Find Full Text PDF
Article Synopsis
  • Hemostatic agents are commonly used in dental procedures to control bleeding, but they can negatively impact the bonding of resin composites to dentin, making their removal before bonding important.
  • The study involved 90 premolar teeth divided into groups treated with either no hemostatic agent, ferric sulfate, or aluminum chloride, with cleanup methods including water, phosphoric acid, katana cleaner, and air abrasion.
  • Results showed that the type of hemostatic agent and cleansing method significantly affected bond strength, with phosphoric acid yielding the best results and ferric sulfate showing the lowest bond strength.
View Article and Find Full Text PDF

Water treeing and water droplets are observed within adhesive layers and on the hybridized surface after bonding sound dentin using single-bottle etch-and-rinse adhesives, indicating permeability of the hybrid layer to water. The aim of this study was to assess the efficacy of dentin sealing by adhesives containing propolis by quantifying the area of water transudation from dentinal tubules after dentin hybridization. Brazilian red propolis was added to experimental adhesive and Single Bond (3M/ESPE) adhesive; experimental adhesive and Single Bond without propolis were used as controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!