Aberrant striatal functional connectivity in children with autism.

Biol Psychiatry

Phyllis Green and Randolph Cōwen Institute for Pediatric Neuroscience, Child Study Center, New York University Langone Medical Center, New York, New York 10016, USA.

Published: May 2011

Background: Models of autism spectrum disorders (ASD) as neural disconnection syndromes have been predominantly supported by examinations of abnormalities in corticocortical networks in adults with autism. A broader body of research implicates subcortical structures, particularly the striatum, in the physiopathology of autism. Resting state functional magnetic resonance imaging has revealed detailed maps of striatal circuitry in healthy and psychiatric populations and vividly captured maturational changes in striatal circuitry during typical development.

Methods: Using resting state functional magnetic resonance imaging, we examined striatal functional connectivity (FC) in 20 children with ASD and 20 typically developing children between the ages of 7.6 and 13.5 years. Whole-brain voxelwise statistical maps quantified within-group striatal FC and between-group differences for three caudate and three putamen seeds for each hemisphere.

Results: Children with ASD mostly exhibited prominent patterns of ectopic striatal FC (i.e., functional connectivity present in ASD but not in typically developing children), with increased functional connectivity between nearly all striatal subregions and heteromodal associative and limbic cortex previously implicated in the physiopathology of ASD (e.g., insular and right superior temporal gyrus). Additionally, we found striatal functional hyperconnectivity with the pons, thus expanding the scope of functional alterations implicated in ASD. Secondary analyses revealed ASD-related hyperconnectivity between the pons and insula cortex.

Conclusions: Examination of FC of striatal networks in children with ASD revealed abnormalities in circuits involving early developing areas, such as the brainstem and insula, with a pattern of increased FC in ectopic circuits that likely reflects developmental derangement rather than immaturity of functional circuits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3091619PMC
http://dx.doi.org/10.1016/j.biopsych.2010.10.029DOI Listing

Publication Analysis

Top Keywords

striatal functional
16
functional connectivity
16
children asd
12
functional
9
connectivity children
8
resting state
8
state functional
8
functional magnetic
8
magnetic resonance
8
resonance imaging
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!