Structural and thermodynamic analysis of PDZ-ligand interactions.

Methods Enzymol

Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.

Published: May 2011

Tiam-family guanine exchange proteins are activators of the Rho GTPase Rac1 and critical for cell morphology, adhesion, migration, and polarity. These modular proteins contain a variety of signaling domains, including a single postsynaptic density-95/discs large/zonula occludens-1 (PDZ) domain. Here, we show how structural and thermodynamic approaches applied to the Tiam1 PDZ domain can be used to gain unique insights into the affinity and specificity of PDZ-ligand interactions with peptides derived from Syndecan1 and Caspr4 proteins. First, we describe a fluorescence anisotropy-based assay that can be used to determine PDZ-ligand interactions, and describe important considerations in designing binding experiments. Second, we used site-specific mutagenesis in combination with double-mutant cycle analysis to probe the binding energetics and cooperativity of residues in two ligand binding pockets (S(0) and S(-2)) that are involved in Tiam1 PDZ-ligand interactions. Peptide ligand binding results and double-mutant cycle analysis revealed that the S(0) pocket was important for Syndecan1 and Caspr4 peptide interactions and that the S(-2) pocket provided selectivity for the Syndecan1 ligand. Finally, we devised a "peptide evolution" strategy whereby a Model consensus peptide was "evolved" into either the Syndecan1 or Caspr4 peptide by site-directed mutagenesis. These results corroborated the PDZ mutational analysis of the S(0) pocket and identified the P(-4) position in the ligand as critical for Syndecan1 affinity and selectivity. Together, these studies show that a combined structural and thermodynamic approach is powerful for obtaining insights into the origin of Tiam1 PDZ-ligand domain affinity and specificity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4137555PMC
http://dx.doi.org/10.1016/B978-0-12-381268-1.00004-5DOI Listing

Publication Analysis

Top Keywords

pdz-ligand interactions
16
structural thermodynamic
12
syndecan1 caspr4
12
pdz domain
8
affinity specificity
8
double-mutant cycle
8
cycle analysis
8
ligand binding
8
tiam1 pdz-ligand
8
caspr4 peptide
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!