The serine recombinases differ mechanistically from the tyrosine recombinases and include proteins such as ϕC31 integrase which, unlike Cre and Flp, promote unidirectional reactions. The serine recombinase family is large and includes many other proteins besides ϕC31 integrase with the potential to be widely used in genome engineering. Here we review the details of the mechanism of the reactions promoted by the serine recombinases and discuss how these not only limit the utility of this class of recombinase but also creates opportunities for the engineering of new enzymes. We discuss the unanswered questions posed by genome engineering experiments in a variety of systems in which the serine recombinases have been used and finally describe more recently discovered serine recombinases that have the potential to be used in genome engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ymeth.2010.12.031 | DOI Listing |
Genes Cells
January 2025
Jiangsu Key Laboratory for Pathogens and Ecosystems, College of Life Sciences, Nanjing Normal University, Nanjing, China.
Serine-arginine protein kinases (SRPKs) play important roles in diverse biological processes such as alternative splicing and cell cycle. However, the functions of SRPKs in DNA damage response remain unclear. Here we characterized the function of SRPKs homolog Dsk1 in regulating DNA repair in the fission yeast Schizosaccharomyces pombe.
View Article and Find Full Text PDFStem Cells
January 2025
Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
To enable robust expression of transgenes in stem cells, recombinase mediated cassette exchange at safe harbour loci is frequently adopted. The choice of recombinase enzyme is a critical parameter to ensure maximum efficiency and accuracy of the integration event. We have explored the serine recombinase family of site-specific integrases and have directly compared the efficiency of PhiC31, W-beta and Bxb1 integrase for targeted transgene integration at the Gt(ROSA)26Sor locus in mouse embryonic stem cells.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Frontier Medicine, Institute of Medical Science, Graduate School of Medicine, St. Marianna University, Kawasaki, 2168511, Japan.
The overexpression of Polo-like kinase 1 (PLK1) is associated with poor clinical outcomes in various malignancies, making it an attractive target for anticancer therapies. Although recent studies suggest PLK1's involvement in homologous recombination (HR), the impact of its overexpression on HR remains unclear. In this study, we investigated the effect of PLK1 overexpression on HR using bioinformatics and experimental approaches.
View Article and Find Full Text PDFAppl Environ Microbiol
December 2024
MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
Over the past three decades, the integrase (Int) from phage C31 has become a valuable genome engineering tool across various species. C31 Int was thought to mediate unidirectional site-specific integration ( × to and ) in the absence of the phage-encoded recombination directionality factor (RDF). However, we have shown in this study that Int can also catalyze reverse excision ( × to and ) at low frequencies in and , causing genetic instability in engineered strains.
View Article and Find Full Text PDFNat Commun
November 2024
School of Molecular Biosciences, University of Glasgow, Bower Building, University Avenue, Glasgow, UK.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!