Calcineurin is a phosphatase that is activated at the last known stage of mitosis, abscission. Among its many substrates, it dephosphorylates dynamin II during cytokinesis at the midbody of dividing cells. However, dynamin II has several cellular roles including clathrin-mediated endocytosis, centrosome cohesion and cytokinesis. It is not known whether dynamin II phosphorylation plays a role in any of these functions nor have the phosphosites involved in cytokinesis been directly identified. We now report that dynamin II from rat lung is phosphorylated to a low stoichiometry on a single major site, Ser-764, in the proline-rich domain. Phosphorylation on Ser-764 also occurred in asynchronously growing HeLa cells and was greatly increased upon mitotic entry. Tryptic phospho-peptides isolated by TiO(2) chromatography revealed only a single phosphosite in mitotic cells. Mitotic phosphorylation was abolished by roscovitine, suggesting the mitotic kinase is cyclin-dependent kinase 1. Cyclin-dependent kinase 1 phosphorylated full length dynamin II and Glutathione-S-Transferase-tagged-dynamin II-proline-rich domain in vitro, and mutation of Ser-764 to alanine reduced proline-rich domain phosphorylation by 80%, supporting that there is only a single major phosphosite. Ser-764 phosphorylation did not affect clathrin-mediated endocytosis or bulk endocytosis using penetratin-based phospho-deficient or phospho-mimetic peptides or following siRNA depletion/rescue experiments. Phospho-dynamin II was enriched at the mitotic centrosome, but this targeting was unaffected by the phospho-deficient or phospho-mimetic peptides. In contrast, the phospho-mimetic peptide displaced endogenous dynamin II, but not calcineurin, from the midbody and induced cytokinesis failure. Therefore, phosphorylation of dynamin II primarily occurs on a single site that regulates cytokinesis downstream of calcineurin, rather than regulating endocytosis or centrosome function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamcr.2010.12.018DOI Listing

Publication Analysis

Top Keywords

phosphorylation dynamin
8
clathrin-mediated endocytosis
8
endocytosis centrosome
8
single major
8
proline-rich domain
8
domain phosphorylation
8
kinase cyclin-dependent
8
cyclin-dependent kinase
8
phospho-deficient phospho-mimetic
8
phospho-mimetic peptides
8

Similar Publications

MFN1 (mitofusin 1) and MFN2 are key players in mitochondrial fusion, endoplasmic reticulum (ER)-mitochondria juxtaposition, and macroautophagy/autophagy. However, the mechanisms by which these proteins participate in these processes are poorly understood. Here, we studied the interactomes of these two proteins by using CRISPR-Cas9 technology to insert an HA-tag at the C terminus of MFN1 and MFN2, and thus generating HeLa cell lines that endogenously expressed MFN1-HA or MFN2-HA.

View Article and Find Full Text PDF

The BCR::ABL1 oncogene plays a crucial role in the development of chronic myeloid leukemia (CML). Previous studies have investigated the involvement of mitochondrial dynamics in various cancers, revealing potential therapeutic strategies. However, the impact of BCR::ABL1 on mitochondrial dynamics remains unclear.

View Article and Find Full Text PDF

Potential compensatory mechanisms preserving cardiac function in myotubular myopathy.

Cell Mol Life Sci

December 2024

Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR7104, University of Strasbourg, 1 rue Laurent Fries, Illkirch, 67404, France.

Article Synopsis
  • X-Linked myotubular myopathy (XLMTM) leads to significant muscle weakness and shorter life expectancy, with unclear impacts from non-muscular issues like liver problems.
  • Research using an Mtm1 mouse model involved RNA-sequencing to understand the disease's effects on skeletal muscles and to check heart and liver functions.
  • Findings showed skeletal muscle issues related to muscle development and inflammation, while the heart maintained function through compensatory mechanisms, suggesting potential areas for treatment focused on muscle defects in XLMTM.
View Article and Find Full Text PDF

Objective: To explore the neuroprotective effect and molecular mechanism of sulforaphane (SFN) on acute carbon monoxide poisoning (ACOP) in rats.

Methods: A total of 135 healthy adult male Sprague-Dawley (SD) rats were randomly divided into normal control group, ACOP model group, and SFN intervention group, with 45 rats in each group. The ACOP animal model was reproduced using carbon monoxide (CO) inhalation in a hyperbaric oxygen chamber, while the normal control group was allowed to breathe fresh air freely.

View Article and Find Full Text PDF

Background: Nicotine, a major component of tobacco, is implicated in the pathogenesis of periodontitis. However, the exact mechanisms through which nicotine exerts its harmful effects remain incompletely understood. This study investigates the impact of nicotine-induced mitochondrial fission on human periodontal ligament cells (hPDLCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!