Characterization of vascular injury responses to stent insertion in an ex-vivo arterial perfusion model.

J Vasc Interv Radiol

Abbott Vascular Inc., Pre-Clinical Research, 3200 Lakeside Drive, Santa Clara, CA 95054, USA.

Published: February 2011

Purpose: To develop an ex-vivo arterial perfusion model to evaluate vascular responses to bare metal stents (BMS) and drug-eluting stents (DES) in porcine carotid arteries.

Materials And Methods: Porcine carotid arteries with BMS or DES were cultured under hemodynamic stimuli for 24 hours and 72 hours. Vascular responses of arteries with stents were assessed by cellular functionality and gene expression and compared with a noninjured (NI) control group at each time point. Cellular functionality was confirmed with sequential dosing of norepinephrine (NE), acetylcholine (ACH), and sodium nitroprusside (SNP). QuantiGene (Panomics, Fremont, California) branched DNA (bDNA) assay was used to evaluate gene expression of endothelial cell (EC) and smooth muscle cell (SMC) biomarkers and compare it with responses of in-vivo arteries with stents. Bromodeoxyuridine (BrDU) stain was also used to detect cellular proliferation in the ex-vivo arteries with stents.

Results: EC relaxation and SMC contraction in response to vasoactivators indicated the arteries remained viable and functional for at least 72 hours in culture. SMC-dependent contractility and EC-dependent relaxation were lower in arteries with stents compared with NI arteries. Greater SMC proliferation was observed in BMS arteries compared with DES arteries. Cellular proliferation, EC function, and SMC marker expression at acute time points were similar between both models suggesting that the ex-vivo arterial model can provide comparative predictions of stent injury in vivo.

Conclusions: The ex-vivo arterial perfusion model can be used as a quick and less costly (than current in-vivo and some in-vitro perfusion testing models) approach for evaluating the vascular responses to various stent design parameters (eg, strut thickness, strut width).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jvir.2010.10.006DOI Listing

Publication Analysis

Top Keywords

ex-vivo arterial
16
arterial perfusion
12
perfusion model
12
vascular responses
12
arteries stents
12
arteries
9
responses stent
8
porcine carotid
8
cellular functionality
8
gene expression
8

Similar Publications

Pregnancy is a vulnerable time with significant cardiovascular changes that can lead to adverse outcomes, which can extend into the postpartum window. Exposure to emissions from electronic cigarettes (Ecig), commonly known as "vaping," has an adverse impact on cardiovascular function during pregnancy and post-natal life of offspring, but the postpartum effects on maternal health are poorly understood. We used a Sprague Dawley rat model, where pregnant dams are exposed to Ecigs between gestational day (GD)2-GD21 to examine postpartum consequences.

View Article and Find Full Text PDF

Background: Here, we assessed the role of the advanced glycation end-product (AGE) precursor methylglyoxal (MGO) and its non-crosslinking AGE MGO-derived hydroimidazolone (MGH)-1 in aortic stiffening and explored the potential of a glycation stress-lowering compound (Gly-Low) to mitigate these effects.

Methods: Young (3-6 month) C57BL/6 mice were supplemented with MGO (in water) and Gly-Low (in chow). Aortic stiffness was assessed in vivo via pulse wave velocity (PWV) and ex vivo through elastic modulus.

View Article and Find Full Text PDF

Exploring Integrin α5β1 as a Potential Therapeutic Target for Pulmonary Arterial Hypertension: Insights From Comprehensive Multicenter Preclinical Studies.

Circulation

January 2025

Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Center, Quebec City, QC, Canada (S.-E.L., Y.G., T.Y., T.S., M.M., C.R., M.S., S.B.-B., A.B., C.T., A.P., R.E.K., S.M., K.Y., F.P., S.P., O.B., S.B.).

Background: Pulmonary arterial hypertension (PAH) is characterized by obliterative vascular remodeling of the small pulmonary arteries (PAs) and progressive increase in pulmonary vascular resistance leading to right ventricular failure. Although several drugs are approved for the treatment of PAH, mortality rates remain high. Accumulating evidence supports a pathological function of integrins in vessel remodeling, which are gaining renewed interest as drug targets.

View Article and Find Full Text PDF

Head and Neck Paraganglioma in Pacak-Zhuang Syndrome.

JNCI Cancer Spectr

January 2025

Section on Medical Neuroendocrinology National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892, MD, USA.

Head and neck paragangliomas (HNPGLs) are typically slow-growing, hormonally inactive tumors of parasympathetic paraganglia. Inactivation of prolyl-hydroxylase domain-containing 2 protein causing indirect gain-of-function of hypoxia-inducible factor-2α (HIF-2α), encoded by EPAS1, was recently shown to cause carotid body hyperplasia. We previously described a syndrome with multiple sympathetic paragangliomas caused by direct gain-of-function variants in EPAS1 (Pacak-Zhuang syndrome, PZS) and developed a corresponding mouse model.

View Article and Find Full Text PDF

ADAMTS4-Specific MR Peptide Probe for the Assessment of Atherosclerotic Plaque Burden in a Mouse Model.

Invest Radiol

January 2025

From the Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany (D.B.M., J.O.K., J.B., A.K., J.M., J.L.H., C.R., M.T., B.H., M.R.M.); Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany (D.B.M., J.O.K., J.B., A.K., L.C.A., M.R.M.); Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany (J.O.K.); Division 1.5 Protein Analysis, Federal Institute for Materials Research and Testing, Berlin, Germany (J.O.K., M.G.W.); Department of Biology, Chemistry, and Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany (A.K.); Department of Veterinary Medicine, Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany (J.L.H.); Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany (C.V., P.N., U.K.); Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Berlin, Germany (A.L.); DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany (A.L.); and Division of Cardiology, Massachusetts General Hospital, Harvard University, Boston, MA (W.C.P.).

Introduction: Atherosclerosis is the underlying cause of multiple cardiovascular pathologies. The present-day clinical imaging modalities do not offer sufficient information on plaque composition or rupture risk. A disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) is a strongly upregulated proteoglycan-cleaving enzyme that is specific to cardiovascular diseases, inter alia, atherosclerosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!