AP-1 controls the trafficking of Notch and Sanpodo toward E-cadherin junctions in sensory organ precursors.

Curr Biol

CNRS UMR 6061-Institut de Génétique et Développement de Rennes, Université de Rennes 1, 2 avenue du Professeur Bernard, 35000 Rennes, France.

Published: January 2011

In Drosophila melanogaster, external sensory organs develop from a single sensory organ precursor (SOP). The SOP divides asymmetrically to generate daughter cells, whose fates are governed by differential Notch activation. Here we show that the clathrin adaptor AP-1 complex, localized at the trans Golgi network and in recycling endosomes, acts as a negative regulator of Notch signaling. Inactivation of AP-1 causes ligand-dependent activation of Notch, leading to a fate transformation within sensory organs. Loss of AP-1 affects neither cell polarity nor the unequal segregation of the cell fate determinants Numb and Neuralized. Instead, it causes apical accumulation of the Notch activator Sanpodo and stabilization of both Sanpodo and Notch at the interface between SOP daughter cells, where DE-cadherin is localized. Endocytosis-recycling assays reveal that AP-1 acts in recycling endosomes to prevent internalized Spdo from recycling toward adherens junctions. Because AP-1 does not prevent endocytosis and recycling of the Notch ligand Delta, our data indicate that the DE-cadherin junctional domain may act as a launching pad through which endocytosed Notch ligand is trafficked for signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2010.12.010DOI Listing

Publication Analysis

Top Keywords

notch
8
sensory organ
8
sensory organs
8
daughter cells
8
recycling endosomes
8
notch ligand
8
ap-1
6
ap-1 controls
4
controls trafficking
4
trafficking notch
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!