Retention of phenylarsenicals in soils derived from volcanic materials.

J Hazard Mater

Centro de Química ICUAP, Universidad Autónoma de Puebla, CU-Edif. 103H, Puebla, Pue. 72570, Mexico.

Published: February 2011

Sorption of phenylarsenicals including 4-hydroxy-3-nitrophenylarsonic acid (roxarsone), an animal feed additive widely used for growth stimulation, on soils was investigated in batch systems. Phenylarsonic acid, o-arsanilic acid and roxarsone were retained differently by unpolluted, non-sterilized soils. Sorption isotherms were analyzed by the Henry, Tóth and Langmuir-Freundlich equations. The saturation capacity of the Acrisol soil was 3.4 for o-arsanilic acid, 10.9 for phenylarsonic acid and 1.9 g(As) kg(soil)(-1) (dry mass) for roxarsone. The iron content in the soil was not the only factor determining retention of the studied phenylarsenicals. The order of retention on the three soils after 24 h was: roxarsone>o-arsanilic acid>phenylarsonic acid. Besides arsenite and arsenate, new arsenic-containing compounds were detected.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2010.12.005DOI Listing

Publication Analysis

Top Keywords

acid roxarsone
8
phenylarsonic acid
8
o-arsanilic acid
8
acid
6
retention phenylarsenicals
4
soils
4
phenylarsenicals soils
4
soils derived
4
derived volcanic
4
volcanic materials
4

Similar Publications

A reduction-secretion system contributes to roxarsone (V) degradation and efflux in Brevundimonas sp. M20.

BMC Microbiol

January 2025

School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Ji'nan, Shandong, 250117, China.

Roxarsone (V) (Rox(V)) is an organoarsenical compound that poses significant risks to aquatic ecosystems and various diseases. Reducing trivalent 3-amino-4-hydroxyphenylarsonic acid (HAPA(III)) offers a competitive advantage; however, it leads to localized arsenic contamination, which can disrupt the soil microbiome and impede plant growth. Three genes, BsntrA, arsC2, and BsexpA, encoding nitroreductase, arsenate reductase, and MFS transporter, respectively, were identified in the Rox(V)-resistant strain Brevundimonas sp.

View Article and Find Full Text PDF

A Sb(III)-specific efflux transporter from Ensifer adhaerens E-60.

Microbiol Res

September 2024

Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China. Electronic address:

Antimony is pervasive environmental toxic substance, and numerous genes encoding mechanisms to resist, transform and extrude the toxic metalloid antimony have been discovered in various microorganisms. Here we identified a major facilitator superfamily (MFS) transporter, AntB, on the chromosome of the arsenite-oxidizing bacterium Ensifer adhaerens E-60 that confers resistance to Sb(III) and Sb(V). The antB gene is adjacent to gene encoding a LysR family transcriptional regulator termed LysR, which is an As(III)/Sb(III)-responsive transcriptional repressor that is predicted to control expression of antB.

View Article and Find Full Text PDF

Arsenic behavior in soil-plant system under the manure application with the combination of antibiotic and roxarsone.

Sci Total Environ

October 2024

School of Resource and Environmental Science, Quanzhou Normal University, Quanzhou 362000, PR China; Key Laboratory of Rural Environmental Remediation and Waste Recycling (Quanzhou Normal University), Fujian Province University, Quanzhou 362000, PR China. Electronic address:

Article Synopsis
  • * It was found that the presence of antibiotics influences the expression of genes related to arsenic biotransformation, particularly inhibiting the aioA gene while promoting the arsM gene under various treatment conditions.
  • * The research highlights the interaction between antibiotic contamination and arsenic levels, suggesting that these factors can significantly alter arsenic dynamics in soil-plant systems and potentially affect environmental risks associated with arsenic exposure.
View Article and Find Full Text PDF

New insight into wastewater treatment by activation of sulfite with humic acid under visible light irradiation.

Water Res

July 2024

State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:

Sulfite (S(IV)), as an alternative to persulfate, has demonstrated its cost-effectiveness and environmentally friendly nature, garnering increasing attention in Advanced Oxidation Processes (AOPs). Dissolved organic matter (DOM) commonly occurred in diverse environments and was often regarded as an interfering factor in sulfite-based AOPs. However, less attention has been paid to the promotion of the activation of sulfite by excited DOM, which could produce various reactive intermediates.

View Article and Find Full Text PDF

Although the arsenic contamination and antibiotic resistance genes (ARGs) during composting have been studied separately, there is limited information on their interactions, particularly, the relationship between arsenic biotransformation genes (ABGs) and ARGs. Therefore, the present study used different forms of arsenic stress (organic and inorganic arsenic at 10 and 50 mg/kg) in pig manure and straw co-composting, to evaluate the effects of arsenic stress on microbial community structures, metabolic function, ABGs, and ARGs. The results showed that arsenic stress had different effects on different parameters and promoted the microbial formation of humic acid and the biodegradation of fulvic acid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!