Two factors determine whether pollution is likely to affect a population indirectly through loss of prey: firstly, the sensitivity of the prey to the pollutants, and secondly, the sensitivity of the predator population to loss of prey at the given life stage. We here apply a statistical recruitment model for Northeast Arctic cod to evaluate the sensitivity of cod cohorts to loss of zooplankton prey, for example following an oil spill. The calculations show that cod cohorts are highly sensitive to possible zooplankton biomass reductions in the distribution area of the cod larvae, and point to a need for more knowledge about oil-effects on zooplankton. Our study illustrates how knowledge about population dynamics may guide which indirect effects to consider in environmental impact studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2010.11.034 | DOI Listing |
Rev Esp Enferm Dig
December 2024
Medical Checkup, Naha City Hospital.
Sci Rep
August 2024
Fisheries Behavioral Ecology Program, Resource Assessment and Conservation Engineering Division, Alaska Fisheries Science Center, Hatfield Marine Science Center, National Marine Fisheries Service, NOAA, Newport, OR, 97365, USA.
Marine heatwaves (MHWs) are often associated with physiological changes throughout biological communities but can also result in biomass declines that correspond with shifts in phenology. We examined the response of larval Pacific cod (Gadus macrocephalus) to MHWs in the Gulf of Alaska across seven years to evaluate the effects of MHWs on hatch phenology, size-at-age, and daily growth and identify potential regulatory mechanisms. Hatch dates were, on average, 19 days earlier since the onset of MHWs, shifting a mean of 15 days earlier per 1 ℃ increase.
View Article and Find Full Text PDFSci Rep
June 2024
Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Coastal Oregon Marine Experiment Station, Hatfield Marine Science Center, 2030 SE Marine Science Dr., Newport, OR, 97365, USA.
Marine Heatwaves (MHWs) can directly influence survival of marine fishes, particularly for early life stages, including age-0 juveniles during their residence in coastal nursery habitats. However, the ability of nurseries to support high fish densities, optimize foraging and growth, and protect against predators may be altered during MHWs. Gulf of Alaska Pacific cod (Gadus macrocephalus) larval, juvenile, and adult abundances declined dramatically following MHW events in 2014-2016 and 2019.
View Article and Find Full Text PDFFish Shellfish Immunol
August 2024
Department of Molecular Biology, University of Bergen, N-5020, Bergen, Norway. Electronic address:
Innate immunity is vital for animal homeostasis and survival. First-line immuno-defense for fish larvae involves mucus enriched with leukolectin (LL) secreted by dermal lectocytes. Later during the critical transition from yolk-nutrition to feeding, additional larval immuno-protection in zebrafish (zF) is provided by macrophages containing LL (lectophages).
View Article and Find Full Text PDFEnviron Technol
May 2024
School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, People's Republic of China.
The present study focused on the degradation of sulfamethoxazole (SMX) aqueous solution and the toxicity of processing aqueous by the dielectric barrier discharge (DBD) activated persulfate (PS). The effects of input voltage, input frequency, duty cycle, and PS dosage ratio on the SMX degradation efficiency were measured. Based on the results of the Response Surface Methodology (RSM), SMX degradation efficiency reached 83.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!