Severity: Warning
Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cu₂ZnSnS₄ (CZTS) nanocrystals, synthesized by a hot injection solution method, have been fabricated into thin films by dip-casting onto fluorine doped tin oxide (FTO) substrates. The photoresponse of the CZTS nanocrystal films was evaluated using absorbance measurements along with photoelectrochemical methods in aqueous electrolytes. Photoelectrochemical characterization revealed a p-type photoresponse when the films were illuminated in an aqueous Eu(3+) redox electrolyte. The effects of CZTS stoichiometry, film thickness, and low-temperature annealing on the photocurrents from front and back illumination suggest that the minority carrier diffusion and recombination at the back contact (via reaction of photogenerated holes with Eu(2+) produced from photoreduction by minority carriers) are the main loss mechanisms in the cell. Low-temperature annealing resulted in significant increases in the photocurrents for films made from both Zn-rich and stoichiometric CZTS nanocrystals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am1008584 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!