A screening for cellobiohydrolase (CBH) activity was performed and Fomitopsis pinicola KMJ812 was selected for further characterization as it produced a high level of CBH activity. An extracellular CBH was purified to homogeneity by sequential chromatography of F. pinicola culture supernatants. The molecular mass of the F. pinicola CBH was determined to be 64 kDa by SDS-PAGE and by size-exclusion chromatography, indicating that the enzyme is a monomer. The F. pinicola CBH showed a t1/2 value of 42 h at 70 degrees C and catalytic efficiency of 15.8 mM-1 S-1 (kcat/ Km) for p-nitrophenyl-beta-D-cellobioside, one of the highest levels seen for CBH-producing microorganisms. Its internal amino acid sequences showed a significant homology with hydrolases from glycoside hydrolase family 7. Although CBHs have been purified and characterized from other sources, the F. pinicola CBH is distinguished from other CBHs by its high catalytic efficiency and thermostability.

Download full-text PDF

Source

Publication Analysis

Top Keywords

pinicola cbh
12
fomitopsis pinicola
8
cbh activity
8
catalytic efficiency
8
pinicola
6
cbh
6
purification characterization
4
characterization thermostable
4
thermostable cellobiohydrolase
4
cellobiohydrolase fomitopsis
4

Similar Publications

A screening for cellobiohydrolase (CBH) activity was performed and Fomitopsis pinicola KMJ812 was selected for further characterization as it produced a high level of CBH activity. An extracellular CBH was purified to homogeneity by sequential chromatography of F. pinicola culture supernatants.

View Article and Find Full Text PDF

Colloidal Gold Cytochemistry of Endo-1,4-beta-Glucanase, 1,4-beta-D-Glucan Cellobiohydrolase, and Endo-1,4-beta-Xylanase: Ultrastructure of Sound and Decayed Birch Wood.

Appl Environ Microbiol

September 1989

Department of Plant Pathology and Department of Biochemistry, University of Minnesota, St. Paul, Minnesota 55108, and Northern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Peoria, Illinois 61604.

Colloidal gold coupled to endo-1,4-beta-glucanase II (EG II) and 1,4-beta-D-glucan cellobiohydrolase I (CBH I), isolated from Trichoderma reesei (QM9414), and endo-1,4-beta-xylanase from Aureobasium pullulans (NRRLY-2311-1) was used successfully to determine the ultrastructural localization of cellulose and xylan in sound birch wood. In addition, these enzyme-gold complexes demonstrated the distribution of cellulose and xylan after decay by three white rot fungi, Phanerochaete chrysosporium, Phellinus pini, and Trametes versicolor, and one brown rot fungus, Fomitopis pinicola. Transverse sections of sound wood showed that EG II was localized primarily on the S(1) layer of the secondary wall, whereas CBH I labeled all layers of the secondary wall.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!