The protein tomosyn decreases synaptic transmission and release probability of vesicles, and is essential for modulating synaptic transmission in neurons. In this study, we provide a detailed description of the expression and localization patterns of tomosyn1 and tomosyn2 in the subareas of the mouse hippocampus. Using confocal and two-photon high-resolution microscopy we demonstrate that tomosyn colocalizes with several pre- and postsynaptic markers and is found mainly in glutamatergic synapses. Specifically, we show that tomosyn1 is differentially distributed in the mouse hippocampus and concentrated mainly in the hilus and mossy fibers. Surprisingly, we found that tomosyn2 is expressed in the subiculum, CA1 and CA2 pyramidal cell bodies, dendrites and spines, and colocalizes with PSD95, suggesting a postsynaptic role. These results suggest that in addition to the well-characterized presynaptic function of tomosyn in neurotransmitter release, tomosyn2 might have a postsynaptic function, and place tomosyn as a more general regulator of synaptic transmission and plasticity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3010824 | PMC |
http://dx.doi.org/10.3389/fnana.2010.00149 | DOI Listing |
Korean J Physiol Pharmacol
January 2025
Department of Anatomy and Convergence Medical Science, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea.
Microglial activation during aging is associated with neuroinflammation and cognitive impairment. Galectin-3 plays a crucial role in microglial activation and phagocytosis. However, the role of galectin-3 in the aged brain is not completely understood.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Institute of Neurophysiology and NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany.
The bimolecular fluorescence complementation (BiFC) technique is a powerful tool for visualizing protein-protein interactions in vivo. It involves genetically fused nonfluorescent fragments of green fluorescent protein (GFP) or its variants to the target proteins of interest. When these proteins interact, the GFP fragments come together, resulting in the reconstitution of a functional fluorescent protein complex that can be observed using fluorescence microscopy.
View Article and Find Full Text PDFNeurobiol Dis
January 2025
Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America. Electronic address:
Aggregation of alpha-synuclein (αsyn) plays an integral role in Parkinson's disease (PD) and Dementia with Lewy bodies (DLB). 14-3-3θ is a highly expressed brain protein with chaperone-like activity that regulates αsyn folding. 14-3-3θ overexpression reduces αsyn aggregation, transmission between cells, and neuronal loss, while 14-3-3 inhibition promotes αsyn pathology.
View Article and Find Full Text PDFASN Neuro
January 2025
Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA.
People living with HIV (PLWH) experience HIV-associated neurocognitive disorders (HAND), even though combination antiretroviral therapy (cART) suppresses HIV replication. HIV-1 transactivator of transcription (HIV-1 Tat) contributes to the development of HAND through neuroinflammatory and neurotoxic mechanisms. C-C chemokine 5 receptor (CCR5) is important in immune cell targeting and is a co-receptor for HIV viral entry into CD4+ cells.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Université Grenoble Alpes, CNRS, LIPhy, Grenoble, France.
Staining brain slices with acetoxymethyl ester (AM) Ca dyes is a straightforward procedure to load multiple cells, and Fluo-4 is a commonly used high-affinity indicator due to its very large dynamic range. It has been shown that this dye preferentially stains glial cells, providing slow and large Ca transients, but it is questionable whether and at which temporal resolution it can also report Ca transients from neuronal cells. Here, by electrically stimulating mouse hippocampal slices, we resolved fast neuronal signals corresponding to 1%-3% maximal fluorescence changes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!