Quantitative measurement of articular cartilage using optical coherence tomography (OCT) is a potential approach for diagnosing the early degeneration of cartilage and assessing the quality of its repair. However, a non-perpendicular angle of the incident optical beam with respect to the tissue surface may cause uncertainty to the quantitative analysis, and therefore, significantly affect the reliability of measurement. This non-perpendicularity was systematically investigated in the current study using bovine articular cartilage with and without mechanical degradation. Ten fresh osteochondral disks were quantitatively measured before and after artificially induced surface degradation by mechanical grinding. The following quantitative OCT parameters were determined with a precise control of the surface inclination up to an angle of 10° using a step of 2°: optical reflection coefficient (ORC), variation of surface reflection (VSR) along the surface profile, optical roughness index (ORI) and optical backscattering (OBS). It was found that non-perpendicularity caused systematic changes to all of the parameters. ORC was the most sensitive and OBS the most insensitive to the inclination angle. At the optimal perpendicular angle, all parameters could detect significant changes after surface degradation (p < 0.01), except OBS (p > 0.05). Nonsignificant change of OBS after surface degradation was expected since OBS reflected properties of the internal cartilage tissue and was not affected by the superficial mechanical degradation. As a conclusion, quantitative OCT parameters are diagnostically potential for characterizing the cartilage degeneration. However, efforts through a better controlled operation or corrections based on computational compensation mechanism should be made to minimize the effects of non-perpendicularity of the incident optical beam when clinical use of quantitative OCT is considered for assessing the articular cartilage.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0031-9155/56/2/013DOI Listing

Publication Analysis

Top Keywords

articular cartilage
16
optical beam
12
surface degradation
12
quantitative oct
12
optical coherence
8
coherence tomography
8
tomography oct
8
surface
8
bovine articular
8
incident optical
8

Similar Publications

Purpose The infrapatellar fat pad (IFP) has the lowest pain threshold among all knee joint components and causes anterior knee pain after knee arthroplasty. It has been reported that selective muscle atrophy of the vastus medialis (VM) and fibrosis of the IFP may develop following knee joint surgery. Ultrasound enables visualization of IFP deformation (A1) from within the joint to the proximal area in response to muscle contraction, and this may be helpful in developing preventive and therapeutic strategies for IFP fibrosis.

View Article and Find Full Text PDF

Reduced weight-bearing during spaceflight has been associated with musculoskeletal degradation that risks astronaut health and performance in transit and upon reaching deep space destinations. Previous rodent experiments aboard the international space station (ISS) have identified that the spaceflight-induced molecular arthritic phenotype was characterized with an increase in oxidative stress. This study evaluated if treatment with a superoxide dismutase (SOD) mimetic on orbit could prevent spaceflight-induced damage to the knee and hip articular cartilage, and the menisci in rodents.

View Article and Find Full Text PDF

Mechanical Wear of Degraded Articular Cartilage.

Ann Biomed Eng

January 2025

School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA.

Purpose: To evaluate the mechanical wear of cartilage with different types of degradation.

Methods: Bovine osteochondral explants were treated with interleukin-1β (IL-1β) to mimic inflammatory conditions, with chondroitinase ABC (ChABC) to specifically remove glycosaminoglycans (GAGs), or with collagenase to degrade the collagen network during 5 days of culture. Viscoelastic properties of cartilage were characterized via indentation.

View Article and Find Full Text PDF

Differentiation of stem cells into chondrocytes and their potential clinical application in cartilage regeneration.

Histochem Cell Biol

January 2025

Department of Forensic Medicine and Forensic Toxicology, Medical University of Silesia, 18 Medyków Street, 40-752, Katowice, Poland.

Cartilage diseases and injuries are considered difficult to treat owing to the low regenerative capacity of this tissue. Using stem cells (SCs) is one of the potential methods of treating cartilage defects and creating functional cartilage models for transplants. Their ability to proliferate and to generate functional chondrocytes, a natural tissue environment, and extracellular cartilage matrix, makes SCs a new opportunity for patients with articular injuries or incurable diseases, such as osteoarthritis (OA).

View Article and Find Full Text PDF

Asymptomatic female softball pitchers have altered hip morphology and cartilage composition.

Sci Rep

January 2025

La Trobe Sport & Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC, Australia.

Few studies have explored hip morphology and cartilage composition in female athletes or the impact of asymmetric repetitive loading, such as occurs during softball pitching. The current cross-sectional study assessed bilateral bony hip morphology on computed tomography imaging in collegiate-level softball pitchers ('Pitch1', n = 25) and cross-country runners ('Run', n = 13). Magnetic resonance imaging was used to assess cartilage relaxation times in a second cohort of pitchers ('Pitch2', n = 10) and non-athletic controls ('Con', n = 4).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!