Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The isolation of pure nucleic acids from clinical samples is a crucial step in the molecular diagnosis of viral infections by nucleic acid testing (NAT). In this study, novel flat glass devices (cards) were demonstrated to support the rapid and efficient extraction of nucleic acids from upper respiratory tract specimens (nasal washes and swabs). The performance of the nucleic acid extraction cards was directly compared to an existing standardized and automated platform for viral extraction from these types of specimens. The flowthrough card method improved the speed of nucleic acid purification and accommodated larger sample volumes in extraction of bacteriophage MS2 RNA from the various specimen matrices. The dynamic range and estimated sensitivity of the card extraction method for reverse transcriptase quantitative real-time PCR (RT-qPCR)-based detection approximate those of the standardized magnetic glass bead extraction method used in this study.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3067707 | PMC |
http://dx.doi.org/10.1128/JCM.01132-10 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!