Feasibility of a two-stage reduction/subsequent oxidation for treating Tetrabromobisphenol A in aqueous solutions.

Water Res

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China.

Published: February 2011

A "two-stage reduction/subsequent oxidation" (T-SRO) process consists of Fe-Ag reduction and Fenton-like oxidation under ultrasound (US) radiation. Due to the refractory oxidation of brominated flame retardant, T-SRO was employed to remove Tetrabromobisphenol A (TBBPA) by the combination of first debromination and succeeding oxidation. It indicated that the T-SRO process resulted in a complete decrease in TBBPA concentration and a 99.2% decrease in BPA concentration. The T-SRO process for the removal of TBBPA is much effective than Fenton-like oxidation of TBBPA alone. The result showed that US radiation improved the Fenton-like oxidation rate of BPA solutions. The addition of dissolved iron into the Fenton-like oxidation system could accelerate the first 2 min reaction, but had little effect on the following process. The main intermediate products resulting from TBBPA reduction and BPA oxidation were identified by GC-MS and LC-MS/MS. On the basis of this analysis, reactions with •OH radical were identified as the major chemical pathways during BPA oxidation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2010.10.039DOI Listing

Publication Analysis

Top Keywords

fenton-like oxidation
16
t-sro process
12
oxidation
9
bpa oxidation
8
feasibility two-stage
4
two-stage reduction/subsequent
4
reduction/subsequent oxidation
4
oxidation treating
4
treating tetrabromobisphenol
4
tetrabromobisphenol aqueous
4

Similar Publications

Nanoconfinement at the interface of heterogeneous Fenton-like catalysts offers promising avenues for advancing oxidation processes in water purification. Herein, we introduce a template-free strategy for synthesizing nanoconfined catalysts from municipal sludge (S-NCCs), specifically engineered to optimize reactive oxygen species (ROS) generation and utilization for rapid pollutant degradation. Using selective hydrofluoric acid corrosion, we create an architecture that confines atomically dispersed Fe centers within a micro-mesoporous carbon matrix in situ.

View Article and Find Full Text PDF

Although the use of biochar as an adsorbent for the removal of various pollutants from wastewater is well established, the use of biochar/modified biochar for the scavenging of antibiotics from aqueous media in the Fenton-like system receives less attention. The highest kasugamycin (KSM) adsorption capacity (5.0 mg g) was obtained from the pristine biochar at the lowest initial pH of 3 in Fenton-like system.

View Article and Find Full Text PDF

Chlorophenols are difficult to degrade and mineralize by traditional advanced oxidation processes due to the strong electronegativity of chlorine. Here, a dual-site atomically dispersed catalyst (FeMoNC) is reported, which Fe/Mo supported on mesoporous nitrogen-doped carbon is prepared through high-temperature migration. The FeMoNC exhibits a high dechlorination rate of 93.

View Article and Find Full Text PDF

Cu-doped waste-tire carbon as catalyst for UV/HO oxidation of ofloxacin.

J Environ Manage

January 2025

School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China. Electronic address:

Ofloxacin (OFX), commonly employed in the treatment of infectious diseases, is frequently detected in aquatic environments and poses potential ecological risks. UV/HO oxidation has been recognized as an efficient approach for removing antibiotics. In this study, Cu-doped waste-tire carbon was prepared and used as a UV/HO catalyst for the degradation of OFX.

View Article and Find Full Text PDF

Mimicking the Reactivity of LPMOs with a Mononuclear Cu Complex.

Eur J Inorg Chem

May 2024

Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.

Lytic polysaccharide monooxygenases (LPMOs) are Cu-dependent metalloenzymes that catalyze the hydroxylation of strong C-H bonds in polysaccharides using O or HO as oxidants (monooxygenase/peroxygenase). In the absence of C-H substrate, LPMOs reduce O to HO (oxidase) and HO to HO (peroxidase) using proton/electron donors. This rich oxidative reactivity is promoted by a mononuclear Cu center in which some of the amino acid residues surrounding the metal might can accept and donate protons and/or electrons during O and HO reduction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!