ADAM15, a member of the A Disintegrin And Metalloproteinase (ADAM) family, is a membrane protein containing an adhesion domain that binds to α5β1 integrin through a unique RGD domain. ADAM15, expressed by human normal colonocytes, is involved in epithelial wound healing and tissue remodeling in inflammatory bowel disease. The aims of our study were (i) to analyze ADAM15 expression in a series of colon carcinomas and paired normal mucosa and (ii) to integrate the spatial relationship of ADAM15 with its binding partners α5β1 integrin, a mesenchymal marker, as well as with other adhesion molecules, α3β1 integrin and E-cadherin. A series of 94 colon carcinomas of the non other specified category were graded according to the World Health Organization classification. Immunohistochemistry was performed on frozen tissue sections using antibodies directed to ADAM15, α5β1 and α3β1 integrins, and E-cadherin. ADAM15 was quantified at the mRNA level. Finally, promoter methylation of ADAM15 was examined as well as the microsatellite instability status (MSS/MSI). Thirty-six percent of colorectal carcinomas displayed a reduced expression of ADAM15 in cancer cells, confirmed at the mRNA level in most cases, without promoter methylation. ADAM15 down-regulation was associated with histologically poorly differentiated carcinomas. In addition, it was associated with the acquisition of α5β1 by cancer cells and down-regulation of α3β1 integrin and E-cadherin. Finally this profile that includes characteristic of epithelial to mesenchymal transition is a late progression event of colon cancer with a poor prognosis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.25891DOI Listing

Publication Analysis

Top Keywords

α5β1 integrin
12
adam15
10
adam15 α5β1
8
poor prognosis
8
series colon
8
colon carcinomas
8
α3β1 integrin
8
integrin e-cadherin
8
mrna level
8
promoter methylation
8

Similar Publications

Titanium (Ti)-based materials are favored for hard tissue applications, yet their bioinertness limits their success. This study hypothesizes that functionalizing Ti materials with chitosan nano/microspheres and calcitriol (VD) will enhance their bioactivity by improving cellular activities and mineralization. To test this, chitosan particles were applied uniformly onto Ti surfaces using electrophoretic deposition (EPD) at 20 V for 3 minutes.

View Article and Find Full Text PDF

Tuberculosis (TB), caused by Mycobacterium TB, is the most significant infectious cause of mortality across the globe. While TB disease can prey on immunocompetent individuals, it is more likely to occur in immunocompromised individuals. Immune-mediated inflammatory diseases (IMIDs) are a group of diseases (rheumatoid arthritis, inflammatory bowel disease, ankylosing spondylitis, psoriasis, hidradenitis suppurative, autoimmune blistering diseases, and others) where there may be a need for systemic immunosuppression to control the disease manifestations, treat symptoms and improve long term outcomes.

View Article and Find Full Text PDF

In thrombosis and hemostasis, the formation of a platelet-fibrin thrombus or clot is a highly controlled process that varies, depending on the pathological context. Major signaling pathways in platelets are well established. However, studies with genetically modified mice have identified the contribution of hundreds of additional platelet-expressed proteins in arterial thrombus formation and bleeding.

View Article and Find Full Text PDF

Mouse embryonic fibroblasts (MEFs) have been widely used as feeder cells in embryonic stem cell cultures because they can mimic the embryonic microenvironment. Milk fat globule-epidermal growth factor 8 (MFGE8) is expressed during mouse gonadal development, 10.5-13.

View Article and Find Full Text PDF

High-throughput measurement of cellular traction forces at the nanoscale remains a significant challenge in mechanobiology, limiting our understanding of how cells interact with their microenvironment. Here, we present a novel technique for fabricating protein nanopatterns in standard multiwell microplate formats (96/384-wells), enabling the high-throughput quantification of cellular forces using DNA tension gauge tethers (TGTs) amplified by CRISPR-Cas12a. Our method employs sparse colloidal lithography to create nanopatterned surfaces with feature sizes ranging from sub 100 to 800 nm on transparent, planar, and fully PEGylated substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!