Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The sea anemone Nematostella vectensis is the leading developmental and genomic model for the phylum Cnidaria, which includes anemones, hydras, jellyfish, and corals. In insects and vertebrates, the NF-κB pathway is required for cellular and organismal responses to various stresses, including pathogens and chemicals, as well as for several developmental processes. Herein, we have characterized proteins that comprise the core NF-κB pathway in Nematostella, including homologs of NF-κB, IκB, Bcl-3, and IκB kinase (IKK). We show that N. vectensis NF-κB (Nv-NF-κB) can bind to κB sites and activate transcription of reporter genes containing multimeric κB sites or the Nv-IκB promoter. Both Nv-IκB and Nv-Bcl-3 interact with Nv-NF-κB and block its ability to activate reporter gene expression. Nv-IKK is most similar to human IKKε/TBK kinases and, in vitro, can phosphorylate Ser47 of Nv-IκB. Nv-NF-κB is expressed in a subset of ectodermal cells in juvenile and adult Nematostella anemones. A bioinformatic analysis suggests that homologs of many mammalian NF-κB target genes are targets for Nv-NF-κB, including genes involved in apoptosis and responses to organic compounds and endogenous stimuli. These results indicate that NF-κB pathway proteins in Nematostella are similar to their vertebrate homologs, and these results also provide a framework for understanding the evolutionary origins of NF-κB signaling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3067825 | PMC |
http://dx.doi.org/10.1128/MCB.00927-10 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!