Single-stranded DNA binding proteins unwind the newly synthesized double-stranded DNA of model miniforks.

Biochemistry

Institut Jacques Monod, UMR7592, "Pathologies de la réplication de l'ADN", CNRS, Paris, France.

Published: February 2011

AI Article Synopsis

  • Single-stranded DNA binding (SSB) proteins are vital for DNA processes, and different SSB proteins (T4 SSB, E. coli SSB, and hRPA) show distinct preferences for binding to single-stranded DNA (ssDNA) tails in various DNA structures.
  • The T4 SSB protein preferentially binds to substrates with 5' ss tails, while E. coli SSB and hRPA prefer 3' ss overhangs.
  • These proteins can destabilize double-stranded regions in DNA structures, suggesting their importance in the reversal of stalled replication forks and in repairing gaps in DNA, which may contribute to issues like repetitive sequence expansion.

Article Abstract

Single-stranded DNA binding (SSB) proteins are essential proteins of DNA metabolism. We characterized the binding of the bacteriophage T4 SSB, Escherichia coli SSB, human replication protein A (hRPA), and human hSSB1 proteins onto model miniforks and double-stranded-single-stranded (ds-ss) junctions exposing 3' or 5' ssDNA overhangs. T4 SSB proteins, E. coli SSB proteins, and hRPA have a different binding preference for the ss tail exposed on model miniforks and ds-ss junctions. The T4 SSB protein preferentially binds substrates with 5' ss tails, whereas the E. coli SSB protein and hRPA show a preference for substrates with 3' ss overhangs. When interacting with ds-ss junctions or miniforks, the T4 SSB protein, E. coli SSB protein, and hRPA can destabilize not only the ds part of a ds-ss junction but also the daughter ds arm of a minifork. The T4 SSB protein displays these unwinding activities in a polar manner. Taken together, our results position the SSB protein as a potential key player in the reversal of a stalled replication fork and in gap repair-mediated repetitive sequence expansion.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi101583eDOI Listing

Publication Analysis

Top Keywords

ssb protein
24
coli ssb
16
model miniforks
12
ssb proteins
12
protein hrpa
12
ds-ss junctions
12
ssb
11
single-stranded dna
8
dna binding
8
protein
7

Similar Publications

A phytocytokine and its derived peptides in the frass of an insect elicit rice defenses.

J Integr Plant Biol

January 2025

State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.

Upon recognizing elicitors derived from herbivores, many plants activate specific defenses. Most of the elicitors identified thus far are from the oral secretions and egg-laying fluids of herbivores; in contrast, herbivore fecal excreta have been sparsely studied in this context. In this study, we identified elicitors in the frass of the striped stem borer (SSB; Chilo suppressalis) larvae using a combination of molecular and chemical analyses, bioactivity tests and insect performance bioassays.

View Article and Find Full Text PDF

A review of the roles of exosomes in salivary gland diseases with an emphasis on primary Sjögren's syndrome.

J Dent Sci

January 2025

State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Salivary gland diseases encompass a broad range of conditions, including autoimmune, inflammatory, obstructive, and neoplastic disorders, significantly impacting oral health and overall well-being. Recent research has highlighted the crucial role of exosomes, small extracellular vesicles, in these diseases. Exosomes mediate intercellular communication by transferring bioactive molecules such as proteins, microRNAs, and lipids, positioning them as potential diagnostic biomarkers and therapeutic agents.

View Article and Find Full Text PDF

Multidrug resistance in the pathogenic fungus Candida glabrata is a growing global threat. Here, we study mechanisms of multidrug resistance in this pathogen. Exposure of C.

View Article and Find Full Text PDF

Impact of ions, pH and the nature of substrate on the structure and activity of a robust single-stranded DNA binding (SSB)-like protein from Phi11.

Arch Microbiol

January 2025

Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, NH17B, Zuarinagar, Goa, 403726, India.

The gene gp13 in bacteriophage Phi11 has been annotated as a Single-Stranded DNA binding protein (SSB protein, GenBank accession no. NC_004615.1).

View Article and Find Full Text PDF

Ferritin From Striped Stem Borer (Chilo suppressalis) Oral Secretion Acts as an Effector Helping to Maintain Iron Homoeostasis and Impair Defenses in Rice.

Plant Cell Environ

January 2025

Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.

The striped stem borer (Chilo suppressalis, SSB) is a highly destructive insect pest in rice (Oryza sativa). SSB oral secretions (OSs) can induce plant defense responses in rice. However, the specific effectors in SSB OSs that mediate these interactions with rice remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!