Density functional theory calculations have been performed for the terminal borylene, alylene, and gallylene complexes [(η(5)-C(5)H(5))(CO)(3)M(ENR(2))] (M = V, Nb; E = B, Al, Ga; R = CH(3), SiH(3), CMe(3), SiMe(3)) using the exchange correlation functional BP86. The calculated geometry parameters of vanadium borylene complex [(η(5)-C(5)H(5))(CO)(3)V{BN(SiMe(3))(2)}] are in excellent agreement with their available experimental values. The M-B bonds in the borylene complexes have partial M-B double-bond character, and the B-N bonds are nearly B═N double bonds. On the other hand, the M-E bonds in the studied metal alylene and gallylene complexes represent M-E single bonds with a very small M-E π-orbital contribution, and the Al-N and Ga-N bonds in the complexes have partial double-bond character. The orbital interactions between metal and ENR(2) in [(η(5)-C(5)H(5))(CO)(3)M(ENR(2))] arise mainly from M ← ENR(2) σ donation. The π-bonding contribution is, in all complexes, much smaller. The contributions of the electrostatic interactions ΔE(elstat) are significantly larger in all borylene, alylene, and gallylene complexes than the covalent bonding ΔE(orb); that is, the M-ENR(2) bonding in the complexes has a greater degree of ionic character.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic1019718 | DOI Listing |
Inorg Chem
February 2011
School of Chemical Sciences, Devi Ahilya University Indore, Indore 452017, India.
Density functional theory calculations have been performed for the terminal borylene, alylene, and gallylene complexes [(η(5)-C(5)H(5))(CO)(3)M(ENR(2))] (M = V, Nb; E = B, Al, Ga; R = CH(3), SiH(3), CMe(3), SiMe(3)) using the exchange correlation functional BP86. The calculated geometry parameters of vanadium borylene complex [(η(5)-C(5)H(5))(CO)(3)V{BN(SiMe(3))(2)}] are in excellent agreement with their available experimental values. The M-B bonds in the borylene complexes have partial M-B double-bond character, and the B-N bonds are nearly B═N double bonds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!