H1N1 influenza, also known as "novel H1N1 virus" has led to a "global outcry." This virus is more virulent when compared with other seasonal flu viruses. Virulence may change as the adaptive mutation gene increases within the virus. A study at the US Centre for Disease Control and Prevention published in May 2009 found that children had no preexisting immunity to the new strain as they showed no cross-reactive antibody reaction when compared with adults aged 18-64 years, who showed a cross-reactive antibody reaction of 6-9% and older adults with 33% immunity. This review article depicts H1N1 virus, its virulence with genetic evolution potential and preventive protocol for the dental professionals. This would allow us to comprehend the changes in the disease process and contribute in its prevention as "prevention is better than cure."
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4103/0970-9290.74235 | DOI Listing |
Med Chem
January 2025
Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences of Agadir, Ibn Zohr University, Agadir, Morocco.
Background: We continue to struggle with the prevention and treatment of the influenza virus. The 2009 swine flu pandemic, caused by the H1N1 strain of influenza A, resulted in numerous fatalities. The threat of influenza remains a significant concern for global health, and the development of novel drugs targeting these viruses is highly desirable.
View Article and Find Full Text PDFNat Commun
January 2025
National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China.
The Eurasian avian-like (EA) H1N1 swine influenza virus (SIV) possesses the capacity to instigate the next influenza pandemic, owing to its heightened affinity for the human-type α-2,6 sialic acid (SA) receptor. Nevertheless, the molecular mechanisms underlying the switch in receptor binding preferences of EA H1N1 SIV remain elusive. In this study, we conduct a comprehensive genome-wide CRISPR/Cas9 knockout screen utilizing EA H1N1 SIV in porcine kidney cells.
View Article and Find Full Text PDFJ R Soc Interface
January 2025
Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA.
Influenza forecasts could aid public health response as shown for temperate regions, but such efforts are more challenging in the tropics and subtropics due to more irregular influenza activities. Here, we built six forecast approaches for influenza in the (sub)tropics, with six model forms designed to model seasonal infection risk (i.e.
View Article and Find Full Text PDFTalanta
January 2025
State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China.
The low sensitivity of Lateral flow assay (LFA) limits its application in rapid detection for trace targets. LFAs with nanozyme (nanozyme-LFA) as signal labels have demonstrated excellent performance in point of care testing (POCT). However, additional operational steps for substrate catalysis in nanozyme LFA are required, which makes the nanozyme-LFA operation complicated.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Lanzhou 730030, China.
Madin-Darby Canine Kidney (MDCK) cells are a key cell line for influenza vaccine production, due to their high viral yield and low mutation resistance. In our laboratory, we established a tertiary cell bank (called M60) using a standard MDCK cell line imported from American Type Culture Collection (ATCC) in the USA. Due to their controversial tumourigenicity, we domesticated non-tumourigenic MDCK cells (named CL23) for influenza vaccine production via monoclonal screening in the early stage of this study, and the screened CL23 cells were characterised based on their low proliferative capacity, which had certain limitations in terms of expanding their production during cell resuscitation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!