The serine/threonine Pim kinases are overexpressed in solid cancers and hematologic malignancies and promote cell growth and survival. Here, we find that a novel Pim kinase inhibitor, SMI-4a, or Pim-1 siRNA blocked the rapamycin-sensitive mammalian target of rapamycin (mTORC1) activity by stimulating the phosphorylation and thus activating the mTORC1 negative regulator AMP-dependent protein kinase (AMPK). Mouse embryonic fibroblasts (MEFs) deficient for all three Pim kinases [triple knockout (TKO) MEFs] demonstrated activated AMPK driven by elevated ratios of AMPATP relative to wild-type MEFs. Consistent with these findings, TKO MEFs were found to grow slowly in culture and have decreased rates of protein synthesis secondary to a diminished amount of 5'-cap-dependent translation. Pim-3 expression alone in TKO MEFs was sufficient to reverse AMPK activation, increase protein synthesis, and drive MEF growth similar to wild type. Pim-3 expression was found to markedly increase the protein levels of both c-Myc and the peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), enzymes capable of regulating glycolysis and mitochondrial biogenesis, which were diminished in TKO MEFs. Overexpression of PGC-1α in TKO MEFs elevated ATP levels and inhibited the activation of AMPK. These results demonstrate the Pim kinase-mediated control of energy metabolism and thus regulation of AMPK activity. We identify an important role for Pim-3 in modulating c-Myc and PGC-1α protein levels and cell growth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3021022 | PMC |
http://dx.doi.org/10.1073/pnas.1013214108 | DOI Listing |
J Virol
December 2024
Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA.
Protein kinase R (PKR) is an interferon-induced antiviral protein activated by autophosphorylation in response to double strand DNA (dsRNA) and other stimuli. Activated PKR causes translation inhibition and apoptosis, and it contributes to proinflammatory responses, cell growth, and differentiation. Mouse adenovirus type 1 (MAV-1) counteracts PKR by causing its degradation via a viral protein, early region 4 open reading frame 6 (E4orf6).
View Article and Find Full Text PDFFront Genet
February 2021
Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, China.
Human Werner syndrome (WS) is an autosomal recessive progeria disease. A mouse model of WS manifests the disease through telomere dysfunction-induced aging phenotypes, which might result from cell cycle control and cellular senescence. Both p21 (p21, encoded by the gene) and p16 (p16, encoded by the gene) are cell cycle inhibitors and are involved in regulating two key pathways of cellular senescence.
View Article and Find Full Text PDFPLoS One
June 2017
Department of Biochemistry and Molecular Genetics, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America.
Maternally expressed gene 3 (MEG3, mouse homolog Gtl2) encodes a long noncoding RNA (lncRNA) that is expressed in many normal tissues, but is suppressed in various cancer cell lines and tumors, suggesting it plays a functional role as a tumor suppressor. Hypermethylation has been shown to contribute to this loss of expression. We now demonstrate that MEG3 expression is regulated by the retinoblastoma protein (Rb) pathway and correlates with a change in cell proliferation.
View Article and Find Full Text PDFOncogene
July 2015
1] Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA [2] Department of Medicine, Medical University of South Carolina, Charleston, SC, USA.
Oncogene
January 2014
1] Department of Medicine, University of Louisville, Louisville, KY, USA [2] Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY, USA [3] Molecular Targets Group, University of Louisville, Louisville, KY, USA.
Retinoblastoma (Rb) protein is a tumor suppressor that is dysregulated in a majority of human cancers. Rb functions to inhibit cell cycle progression in part by directly disabling the E2F family of cell cycle-promoting transcription factors. Because the de novo synthesis of multiple glutamine-derived anabolic precursors is required for cell cycle progression, we hypothesized that Rb also may directly regulate proteins involved in glutamine metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!