Egr1 mediates p53-independent c-Myc-induced apoptosis via a noncanonical ARF-dependent transcriptional mechanism.

Proc Natl Acad Sci U S A

Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-2175, USA.

Published: January 2011

c-Myc is frequently deregulated in human cancers. Although deregulated c-Myc leads to tumor growth, it also triggers apoptosis in partnership with tumor suppressors such as ARF and p53. Apoptosis induced by c-Myc is a critical fail-safe mechanism for the cell to protect against unrestrained proliferation. Despite the plethora of information on c-Myc, the molecular mechanism of how c-Myc induces both transformation and apoptosis is unclear. Oncogenic c-Myc can indirectly induce the expression of the tumor suppressor ARF, which leads to apoptosis through the stabilization of p53, but both c-Myc and ARF have apoptotic activities that are independent of p53. In cells without p53, ARF directly binds to c-Myc protein and inhibits c-Myc-induced hyperproliferation and transformation with a concomitant inhibition of canonical c-Myc target gene induction. However, ARF is an essential cofactor for p53-independent c-Myc-induced apoptosis. Here we show that ARF is necessary for c-Myc to drive transcription of a unique noncanonical target gene, Egr1. In contrast, c-Myc induces another family member, Egr2, through a canonical mechanism that is inhibited by ARF. We further demonstrate that Egr1 is essential for p53-independent c-Myc-induced apoptosis, but not ARF-independent c-Myc-induced apoptosis. Therefore, ARF binding switches the inherent activity of c-Myc from a proliferative to apoptotic protein without p53 through a unique noncanonical transcriptional mechanism. These findings also provide evidence that cofactors can differentially regulate specific transcriptional programs of c-Myc leading to different biological outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3021028PMC
http://dx.doi.org/10.1073/pnas.1008848108DOI Listing

Publication Analysis

Top Keywords

c-myc-induced apoptosis
16
c-myc
13
p53-independent c-myc-induced
12
apoptosis
8
transcriptional mechanism
8
mechanism c-myc
8
arf
8
c-myc induces
8
target gene
8
apoptosis arf
8

Similar Publications

Background: The prognosis of B-cell acute lymphoblastic leukemia (B-ALL) has improved significantly with current first-line therapy, although the recurrence of B-ALL is still a problem. Toll-like receptor 9 (TLR9) agonists have shown good safety and efficiency as immune adjuvants. Apart from their immune regulatory effect, the direct effect of TLR9 agonists on cancer cells with TLR9 expression cannot be ignored.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is an aggressive disease with a low 5-year overall survival rate of 29.5%. Thus, more effective therapies are in need to prolong survival of AML patients.

View Article and Find Full Text PDF

Generation and characterization of genome-modified chondrocyte-like cells from the zebra finch cell line immortalized by c-MYC expression.

Front Zool

June 2022

Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.

Background: Due to their cost effectiveness, ease of use, and unlimited supply, immortalized cell lines are used in place of primary cells for a wide range of research purposes, including gene function studies, CRISPR-based gene editing, drug metabolism tests, and vaccine or therapeutic protein production. Although immortalized cell lines have been established for a range of animal species, there is still a need to develop such cell lines for wild species. The zebra finch, which is used widely as a model species to study the neurobiological basis of human speech disorders, has been employed in several functional studies involving gene knockdown or the introduction of exogenous transgenes in vivo; however, the lack of an immortalized zebra finch cell line has hampered precise genome editing studies.

View Article and Find Full Text PDF

TAZ is indispensable for c-MYC-induced hepatocarcinogenesis.

J Hepatol

January 2022

Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California, USA. Electronic address:

Background & Aims: Mounting evidence implicates the Hippo downstream effectors Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) in hepatocellular carcinoma (HCC). We investigated the functional contribution of YAP and/or TAZ to c-MYC-induced liver tumor development.

Methods: The requirement for YAP and/or TAZ in c-Myc-driven hepatocarcinogenesis was analyzed using conditional Yap, Taz, and Yap;Taz knockout (KO) mice.

View Article and Find Full Text PDF

Objective: c-myc has been reported to attenuate ischemia stroke (IS). We initiated the research to uncover the molecular mechanism of c-myc with regard to microRNA (miR)-200b-5p/Sirtuin1 (SIRT1) axis.

Methods: An IS mouse model was prepared by middle cerebral artery occlusion (MCAO).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!