Motion detection is typically spared in blindsight, which results from damage to the striate cortex (area V1) of the brain that is sufficient to eliminate conscious visual awareness and severely reduce sensitivity to luminance contrast, especially for high spatial and low temporal frequencies. Here we show that the discrimination of motion direction within cortically blind fields is not attributable to feature tracking (the detection of changes in position or shape), but is due instead to the detection of first-order motion energy (spatiotemporal changes in luminance). The key to this finding was a version of the line motion illusion entailing reverse-phi motion in which opposing motion directions are simultaneously cued by motion energy and changes in stimulus shape. In forced-choice tests, a blindsighted test subject selected the direction cued by shape change when the stimulus was presented in his intact field, but reliably selected the direction cued by motion energy when the same stimulus was presented in his blind field, where relevant position information was either inaccessible or invalid. Motion energy has been characterized as objectless, so reliance on motion energy detection is consistent with impaired access to shape information in blindsight. The dissociation of motion direction by visual field (cortically blind vs. intact) provides evidence that two pathways from the retina to MT/V5 (the cortical area specialized for motion perception) are functionally distinct: the retinogeniculate pathway through V1 is specialized for feature-based motion perception, whereas the retinocollicular pathway, which bypasses V1, is specialized for detecting motion energy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3021061 | PMC |
http://dx.doi.org/10.1073/pnas.1005974108 | DOI Listing |
PNAS Nexus
January 2025
Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain.
L-Amino acid transporters (LATs) play a key role in a wide range of physiological processes. Defects in LATs can lead to neurological disorders and aminoacidurias, while the overexpression of these transporters is related to cancer. BasC is a bacterial LAT transporter with an APC fold.
View Article and Find Full Text PDFAm J Transl Res
December 2024
School of Physical Education, Nanchang University Nanchang, Jiangxi, China.
Objective: To investigate the protective effects of ankle braces in patients with functional ankle instability.
Methods: This retrospective study involved 30 participants recruited from January 2023 to December 2023 at School of Physical Education, Nanchang University. These participants were divided into an ankle brace group wearing braces and a control group without braces.
PLoS One
January 2025
Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia.
This work considers a stochastic form of an extended version of the Kairat-II equation by adding Browning motion into the deterministic equation. Two analytical approaches are utilized to derive analytical solutions of the modified equation. The first method is the modified Tanh technique linked with the Riccati equation, which is implemented to extract some closed-form solutions in the form of tangent and cotangent functions.
View Article and Find Full Text PDFSports Biomech
January 2025
Department of Physical Therapy, George Fox University, Newberg, OR, USA.
Achilles tendinopathy (AT) is the most common running-related pathology among masters runners. Previous evidence suggests there are no differences in submaximal running biomechanics between masters runners with and without AT. Evidence suggests lower extremity power deficits are common among ageing individuals and those with AT.
View Article and Find Full Text PDFBiophys J
January 2025
Department of Physics and Astronomy, Department of Chemistry, NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California, USA. Electronic address:
In this work we present a minimal structure-based model of protein diffusional search along local DNA amid protein binding and unbinding events on the DNA, taking into account protein-DNA electrostatic interactions and hydrogen-bonding (HB) interactions or contacts at the interface. We accordingly constructed the protein diffusion-association/dissociation free energy surface and mapped it to 1D as the protein slides along DNA, maintaining the protein-DNA interfacial HB contacts that presumably dictate the DNA sequence information detection. Upon DNA helical path correction, the protein 1D diffusion rates along local DNA can be physically derived to be consistent with experimental measurements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!