Application of adeno-associated virus (AAV) vector in large animal studies and clinical trials often requires high-titer and high-potency vectors. A number of currently used vector production methods, based on either transient transfection or helper virus infection of cell lines, have their advantages and limitations. We previously developed a 293-cell-based producer cell line method for high-titer and high-potency AAV2 vectors. Similar to several other methods, however, it requires multiple cloning steps for the vector and packaging plasmids and a two-step transfection and selection for stable cell lines. Here we report a simplified method with several key improvements and advantages: (1) a one-step cloning of AAV vector cassette into the serotype-specific packaging plasmid; (2) a single plasmid transfection and selection for stable AAV vector producer cell lines; (3) high vector yields of different serotypes, e.g., AAV2, 8, and 9, upon infection with an E1A/E1B-deleted helper adenovirus; (4) efficient packaging of both single-stranded and double-stranded (self-complementary) AAV vectors; and (5) efficient packaging of large AAV cassettes such as a mini-dystrophin vector (5.0 kb). All cell lines were stable with growth rates identical to the parental 293 cells. The vector yields were consistent among serotypes, with 5 × 10(13) to 8 × 10(13) vector genome particles per Nunc cell factory (equivalent to 40 15-cm plates). The vectors showed high potency for in vitro and in vivo transduction. In conclusion, the simple and versatile AAV producer cell line method can be useful for large scale AAV vector production in preclinical and clinical studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3081441 | PMC |
http://dx.doi.org/10.1089/hum.2010.241 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!