Chronic hypoxia alters mitochondrial energy metabolism. In the heart, oxidative capacity of both ventricles is decreased after 3 weeks of chronic hypoxia. The aim of this study was to evaluate the reversal of these metabolic changes upon normoxia recovery. Rats were exposed to a hypobaric environment for 3 weeks and then subjected to a normoxic environment for 3 weeks (normoxia-recovery group) and compared with rats maintained in a normoxic environment (control group). Mitochondrial energy metabolism was differentially examined in both left and right ventricles. Oxidative capacity (oxygen consumption and ATP synthesis) was measured in saponin-skinned fibers. Activities of mitochondrial respiratory chain complexes and antioxidant enzymes were measured on ventricle homogenates. Morphometric analysis of mitochondria was performed on electron micrographs. In normoxia-recovery rats, oxidative capacities of right ventricles were decreased in the presence of glutamate or palmitoyl carnitine as substrates. In contrast, oxidation of palmitoyl carnitine was maintained in the left ventricle. Enzyme activities of complexes III and IV were significantly decreased in both ventricles. These functional alterations were associated with a decrease in numerical density and an increase in size of mitochondria. Finally, in the normoxia-recovery group, the antioxidant enzyme activities (catalase and glutathione peroxidase) increased. In conclusion, alterations of mitochondrial energy metabolism induced by chronic hypoxia are not totally reversible. Reactive oxygen species could be involved and should be investigated under such conditions, since they may represent a therapeutic target.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/y10-105 | DOI Listing |
J Integr Neurosci
January 2025
Department of Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, Rio Grande do Sul (RS), Brazil.
Mitochondria are organelles of eukaryotic cells delimited by two membranes and cristae that consume oxygen to produce adenosine triphosphate (ATP), and are involved in the synthesis of vital metabolites, calcium homeostasis, and cell death mechanisms. Strikingly, normal mitochondria function as an integration center between multiple conditions that determine neural cell homeostasis, whereas lesions that lead to mitochondrial dysfunction can desynchronize cellular functions, thus contributing to the pathophysiology of traumatic brain injury (TBI). In addition, TBI leads to impaired coupling of the mitochondrial electron transport system with oxidative phosphorylation that provides most of the energy needed to maintain vital functions, ionic homeostasis, and membrane potentials.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Laboratory of Biological Oxidations, Department of Biochemistry, State University of Maringa, Maringa 87020-900, PR, Brazil.
The cover crop (L.) R.Br.
View Article and Find Full Text PDFMolecules
January 2025
Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, Republic of Korea.
The decline in autophagy disrupts homeostasis in skin cells, leading to oxidative stress, energy deficiency, and inflammation-all key contributors to skin photoaging. Consequently, activating autophagy has become a focal strategy for delaying skin photoaging. Natural plants are rich in functional molecules and widely used in the development of anti-photoaging cosmetics.
View Article and Find Full Text PDFInsects
December 2024
Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
Adult polyphenism is a prevalent form of adaptive evolution that enables insects to generate discrete phenotypes based on environmental factors. However, the morphology and molecular mechanisms underlying adult dimorphism in (a global storage pest) remain elusive. Understanding these mechanisms is crucial for predicting the dispersal and population dynamics of .
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, National-Local Joint Engineering Research Center for Breeding and Cultivation of Featured Edible Mushroom, Fuzhou 350011, China.
Spawn aging poses a substantial challenge to the industry. This study focuses on the role of mitochondrial dysfunction in the aging process of spawn. We conducted a comprehensive comparative transcriptome analysis to elucidate the molecular mechanisms underlying spawn aging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!