Normal aging processes, as well as, psychological stress affect the immune system; each can act alone, or interact with each other, to cause dysregulation of immune function substantially altering physical and mental health. The sympathetic nervous system (SNS), a major mediator of stress effects on immune function, is significantly affected by normal aging process, and stress can affect aging of the SNS. Previously, we have shown age-associated changes in sympathetic noradrenergic (NA) innervation of lymphoid organs in male rodents that affect immune regulation. The purpose of this study was to investigate sympathetic innervation of lymphoid organs and associated alterations in immune responses in young and aging female Fischer 344 (F344) rats. Histofluorescence and immunocytochemistry for NA innervation, and neurochemistry for norepinephrine (NE) levels were performed in the thymus, spleen, and mesenteric lymph nodes (MLN) isolated from 3-month-old young (normal estrous cycle), 8- to 9-month-old (onset of irregular estrous cycling), and 24-25 month, and 30-31 month female F344 rats (acyclic) at diestrus based on vaginal smears. Age-related alterations in natural killer (NK) cell activity, interleukin-2 (IL-2) and interferon-γ (IFN-γ) production, T and B lymphocyte proliferation were examined in splenocytes. Sympathetic NA innervation and NE levels increased with aging in the thymus, declined in spleen and MLN, and was accompanied by significant reductions in NK cell activity, IL-2 and IFN-γ production, and T and B cell proliferation in old female rats. In 8-9 mo rats, NE levels in the hilar region of the spleen and IFN-γ production were unaltered, while NE levels in the end region of the spleen and IL-2 production were reduced. Collectively, these results suggest that aging is characterized by significant alterations in sympathetic NA innervation in the thymus, spleen, and MLN associated with immunosuppression, and that there is a marked shift in NA activity and immune reactivity occurring during middle-aged female rats.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074019 | PMC |
http://dx.doi.org/10.1016/j.jneuroim.2010.11.012 | DOI Listing |
J Clin Pathol
January 2025
Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA.
Am J Hum Genet
January 2025
Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany; Institute of Clinical Human Genetics, University Hospital Regensburg, 93053 Regensburg, Germany. Electronic address:
BCL11B is a Cys2-His2 zinc-finger (C2H2-ZnF) domain-containing, DNA-binding, transcription factor with established roles in the development of various organs and tissues, primarily the immune and nervous systems. BCL11B germline variants have been associated with a variety of developmental syndromes. However, genotype-phenotype correlations along with pathophysiologic mechanisms of selected variants mostly remain elusive.
View Article and Find Full Text PDFAnat Histol Embryol
January 2025
Laboratório de Morfologia e Atividade Física, São Paulo State University, Rio Claro, São Paulo, Brazil.
Collared Peccary (Pecari tajacu, Linnaeus, 1758) is a mammalian Tayassuidae species from tropical to semi-arid areas. The morphological features of the oral cavity in this species were identified and described. Tonsils are secondary lymphoid organs essential for contact with antigens due to food and air intake.
View Article and Find Full Text PDFCells
December 2024
Department of Otorhinolaryngology, Ulm University Medical Center, 89075 Ulm, Germany.
Due to their high developmental diversity and different regulatory and functional roles, B cell subpopulations can promote or inhibit tumor growth. An orthotopic murine HNSCC model was applied to investigate the B cell composition and function in HNSCCs. Using flow cytometry approaches, cells from the spleen, lymph nodes and tumors were analyzed.
View Article and Find Full Text PDFJ Allergy Clin Immunol
January 2025
Department of Internal Medicine, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium; Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium.
Background: Hypereosinophilic syndrome (HES) is characterized by blood and tissue hypereosinophilia causing organ damage and/or dysfunction. Mepolizumab, an anti-IL-5 antibody, has recently been approved in this indication. In lymphoid variant (L-)HES, eosinophil expansion is driven by IL-5-producing clonal CD3CD4 T cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!