Direct evidence that the mammalian neocortex is an important generator of intrinsic activity comes from isolated neocortical slices that spontaneously generate multiple rhythms including those in the beta, delta and gamma range. These oscillations are also seen in intact animals where they interact with other areas including the hippocampus, thalamus and basal ganglia. Here we show that thick isolated neocortical slices from hooded seals intrinsically generate persistent spontaneous activities, both repetitive non-rhythmic activity with activity states lasting for several minutes, and oscillating activity with rhythms that are much slower (<0.1 Hz) than the rhythms previously described in vitro. These intrinsic activities were very robust and persisted for up to 1 h even in severely hypoxic conditions. We hypothesize that the remarkable hypoxia tolerance of the hooded seal nervous system made it possible to maintain functional integrity in slices thick enough to preserve intact neuronal networks capable of generating these slow oscillations. The observed activities in seal neocortical slices support the notion that mammalian cortical networks intrinsically generate multiple states of activity that include oscillatory activity all the way down to <0.1 Hz. This intrinsic neocortical excitability is an important contributor not only to sleep but also to the default awake state of the neocortex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2010.12.032 | DOI Listing |
Prog Neurobiol
January 2025
Institute of Biomedical Investigations August Pi i Sunyer (IDIBAPS), Systems Neuroscience, 08036 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain. Electronic address:
Elucidating human cerebral cortex function is essential for understanding the physiological basis of both healthy and pathological brain states. We obtained extracellular local field potential recordings from cortical slices of neocortical tissue from refractory epilepsy patients. Multi-electrode recordings were combined with histological information, providing a two-dimensional spatiotemporal characterization of human cortical dynamics in control conditions and following modulation of the excitation/inhibition balance.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Molecular Medicine, Brain Signalling Laboratory, Institute of Basic Medical Sciences, Section for Physiology, University of Oslo, Oslo, Norway.
Propofol and ketamine are widely used general anaesthetics, but have different effects on consciousness: propofol gives a deeply unconscious state, with little or no dream reports, whereas vivid dreams are often reported after ketamine anaesthesia. Ketamine is an N-methyl-D-aspartate (NMDA) receptor antagonist, while propofol is a γ-aminobutyric-acid (GABAA) receptor positive allosteric modulator, but these mechanisms do not fully explain how these drugs alter consciousness. Most previous in vitro studies of cellular mechanisms of anaesthetics have used brain slices or neurons in a nearly "comatose" state, because no "arousing" neuromodulators were added.
View Article and Find Full Text PDFSci Rep
December 2024
State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, China.
Microelectrode arrays (MEAs) have been widely used in studies on the electrophysiological features of neuronal networks. In classic MEA experiments, spike or burst rates and spike waveforms are the primary characteristics used to evaluate the neuronal network excitability. Here, we introduced a new method to assess the excitability using the voltage threshold of electrical stimulation.
View Article and Find Full Text PDFBio Protoc
December 2024
Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain.
Brain development is highly complex and dynamic. During this process, the different brain structures acquire new components, such as the cerebral cortex, which builds up different germinal and cortical layers during its development. The genetic study of this complex structure has been commonly approached by bulk-sequencing of the entire cortex as a whole.
View Article and Find Full Text PDFNat Commun
December 2024
Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Berlin, Germany.
Synaptic mechanisms that contribute to human memory consolidation remain largely unexplored. Consolidation critically relies on sleep. During slow wave sleep, neurons exhibit characteristic membrane potential oscillations known as UP and DOWN states.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!