Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Young's modulus of an individual multi-wall carbon nanotube has been determined by the method of quasi-static transverse bending due to a Lorentz force observed in situ in a transmission electron microscope. The deflection of the nanotube allows the determination of Young's modulus using Euler-Bernoulli's beam equation. Because we determine the specific dependence of the deflection on the position along the nanotube axis, it is possible to gain insight into the type of mountings and furthermore allows for an estimation of the homogeneity of the nanotube. Both properties have been found to be of importance to determine Young's modulus. It was found to be higher by up to a factor of 1.6 compared to the value obtained by assuming rigid mountings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultramic.2010.10.019 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!