The comparative analysis of the deleterious action of albumin and total serum proteins (SP) might help to understand the nature of the interaction surfactant--SP. This study evaluated the effects of serum proteins and albumin on bulk shear viscosity, surface tension, surface area reduction, and the ratio between the light and heavy subtypes of surfactant suspensions. Our results showed a correlation between the bulk viscosity and aggregation degree of surfactant suspensions. The addition of albumin or SP induced the transformation from the heavy to the light subtype, reducing the viscosity. SP caused disaggregation and inactivation, whereas albumin caused only disaggregation without loss of surface activity. When SP were removed, the heavy fraction obtained recovered its surface activity. We conclude that the disaggregation may not be the primary cause for the loss of surface activity. Surfactant inactivation by a serum component, different from albumin, would be probably due to a physical interaction, a phenomenon that is reversed when SP are removed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.resp.2010.12.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!