The chromatographic separation and instrumental limits of detection (LODs) were obtained for a broad range of C(1)-C(18) monocarboxylic (MCAs) and C(2)-C(14) dicarboxylic acids (DCAs) employing either chemical derivatization followed by gas chromatography-mass spectrometry and flame ionization detection (GC-MS/FID) or direct analysis with liquid chromatography high resolution MS and tandem MS (LC-MS). Suitability, efficiency and stability of reaction products for several derivatization agents used for esterification (BF(3)/butanol), and trimethysilylation, including trimethylsilyl-N-N-dimethylcarbamate (TMSDMC) and N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) were evaluated. The lowest limits of detection for the majority of compounds below 10 pg (with the exception of acetic acid) were obtained for derivatization with BF(3)/butanol followed by GC-MS in the total ion current (TIC) mode. Further improvements were achieved when applying either selected ion monitoring (SIM), which decreased the LODs to 1-4 pg or a combination of SIM and TIC (SITI) (2-5 pg). GC-FID provided LODs comparable to those obtained by GC-MS TIC. Both trimethylsilylation (followed by GC-MS) and direct LC-MS/MS analysis yielded LODs of 5-40 pg for most of the acids. For volatile acids the LODs were higher, e.g., 25 and 590 ng for TMSDMC and BSTFA derivatized formic acid, respectively, whereas the LC-MS methods did not allow for the analysis of formic acid at all.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3090519 | PMC |
http://dx.doi.org/10.1016/j.jchromb.2010.11.027 | DOI Listing |
Tree Physiol
January 2025
Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
Tree bark is a crucial tissue that defends tree stems from invasions by microorganisms. However, our understanding of the constitutive chemical defense mechanisms of the tree barks remains limited. Our group recently discovered that the inner bark of Sorbus commixta exhibited potent inhibitory effects on the growth of the white-rot fungus, Trametes versicolor.
View Article and Find Full Text PDFJ Vis
January 2025
Neural Information Processing Group, University of Tübingen, Tübingen, Germany.
Human performance in psychophysical detection and discrimination tasks is limited by inner noise. It is unclear to what extent this inner noise arises from early noise (e.g.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat, Gujarat, 395007, India.
An easy-to-synthesize aggregation-induced emission (AIE) active Schiff base HNSA was obtained by condensing equimolar amount of 3-hydroxy-2-naphthohydrazide and salicylaldehyde. In pure DMSO, HNSA is non-fluorescent, but increasing the HEPES (HO, 10 mM, pH 7.4) fraction (f) ≥ 90% showed an intense green fluorescence with maximum fluorescence intensity at 515 nm.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxue East Road, Nanning, Guangxi, 530004, China.
Two dipicolylamine (DPA) derivatives with the pyrene and anthracene groups, 1-(pyren-1-yl)-N, N-bis-(pyridine-2-ylmethyl)benzylamine (L1) and 1-(anthracen-9-yl)-N, N-bis-(pyridine-2-ylmethyl)benzylamine (L2) were synthesized, characterized, and their affinitive properties for metal ions were studied. The mass spectroscopy and Job's plots showed that L1 and L2 reacted with Cu and formed complexes [Cu(L1)(solvent)] (L1-Cu) and [Cu(L2)(solvent)] (L2-Cu), respectively. Both L1 and L2 were fluorescent probes recognizing Cu via the emission quenching and further detecting HS via the emission revival.
View Article and Find Full Text PDFJ Fluoresc
January 2025
College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, P. R. China.
The fluorescence detection of amino compounds and the evaluation of their content in environmental samples are vital, not only for assessing food quality but also for studying soil organic matter. Here, we present the synthesis and application of a novel fluorescent probe, 4-(9-acridone)benzylmethyl carbonochloride (APE-Cl), for detecting amino compounds via a chloroformate reaction with fluorescence detection. The complete derivatization reaction of APE-Cl with amino compounds can be accomplished in aqueous acetonitrile within 5 min at room temperature, using 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!