A new type of biosorbent was developed for binding anionic precious metals through cross-linking waste biomass Corynebacterium glutamicum with polyethylenimine (PEI). This biomass was evaluated for the removal and recovery of palladium and compared to commercial adsorbents, such as Amberjet 4200 Cl, Lewatit Monoplus TP 214, SPC-100, and SPS-200. The kinetic experiments revealed that the sorption equilibrium was reached with 30 min for the PEI-modified biomass. The maximum uptake of the biosorbent was 176.8 mg/g, which was calculated using the Langmuir model. The Pd(II) maximum uptake exhibited the following order: Amberjet 4200 Cl>Lewatit Monoplus TP 214>PEI-modified biomass>SPC-100>SPS-200. Acidified thiourea in 1.0M HCl was used to desorb Pd(II) from all of the sorbents examined.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2010.11.106 | DOI Listing |
Nucleic Acids Res
January 2025
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China.
Inducible systems are crucial to metabolic engineering and synthetic biology, enabling organisms that function as biosensors and produce valuable compounds. However, almost all inducible systems are strain-specific, limiting comparative analyses and applications across strains rapidly. This study designed and presented a robust workflow for developing the cross-species inducible system.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Low-Carbon Transition R&D Department, Korea Institute of Industrial Technology (KITECH), 89, Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan-si 31056, Republic of Korea.
Protocatechuate acid (PCA) is a phenolic acid naturally synthesized by various organisms. Protocatechuic acid is synthesized by plants for physiological, metabolic functions, and self-defense, but extraction from plants is less efficient compared to the microbial culture process. The microbial synthesis of protocatechuic acid is sustainable and, due to its high yield, can save energy consumption when producing the same amount.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Risk Assessment Laboratory of Animal Product Quality Safety Feed Source Factors of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
Peptidoglycan (PGN) is a unique component of prokaryotic cell walls with immune-enhancing capacities. Here, we extracted PGN from , a by-product of amino acid fermentation, using the trichloroacetic acid (TCA) method. SDS-PAGE analysis confirmed the presence of PGN, with a band of approximately 28 kDa.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.
The biobased production of chemicals is essential for advancing a sustainable chemical industry. 1,5-Pentanediol (1,5-PDO), a five-carbon diol with considerable industrial relevance, has shown limited microbial production efficiency until now. This study presents the development and optimization of a microbial system to produce 1,5-PDO from glucose in Corynebacterium glutamicum via the l-lysine-derived pathway.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
Ectoine is a valuable compatible solute with extensive applications in bioengineering, cosmetics, medicine, and the food industry. While certain halophilic bacteria can naturally produce ectoine, as a model organism for biomanufacturing, offers significant advantages to be engineered for potentially high-level ectoine production. However, complex metabolic flux distributions and byproduct formation present bottlenecks that limit ectoine production in .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!