Impaired neonatal survival of pro-opiomelanocortin null mutants.

Mol Cell Endocrinol

Duke Neurotransgenic Laboratory, Duke University, Durham, NC 27710, USA.

Published: April 2011

Intercrosses of heterozygous pro-opiomelanocortin (POMC) mice result in homozygous null progeny at lower frequencies than expected. Genotyping offspring at pre-, peri-, and postnatal stages revealed that over half of homozygous null mutants die in the early postnatal stages. To investigate the reasons for this early postnatal lethality, we analyzed in detail different parameters in the initial hours after birth. POMC null mutants born to heterozygous dams presented at birth with corticosterone levels no different from wildtype littermates, were euglycemic, and had normal liver glycogen stores. However, already 30 min after birth corticosterone levels dropped by 80% and were undetectable thereafter, while corticosterone levels in wildtype animals increased during postnatal hours. Circulating adrenaline was almost below detection 1h after birth. Blood glucose levels fell sharply in all genotypes within 30 min after birth; however, wildtype and heterozygous pups overcame hypoglycemia within an hour, while mutant pups stayed hypoglycemic. The depletion of liver glycogen stores in mutant pups was significantly less efficient compared to their littermates in the hours after birth. POMC null mutant mice born to POMC null mutant dams completely lack corticosterone and die of the expected respiratory dysfunction. In contrast, POMC null mutant mice born to heterozygous dams do not die of respiratory problems, but rather due to hypoglycemia. Our studies confirm an essential involvement of POMC peptides and of adrenal glucocorticoids and catecholamines on glucose homeostasis critical for early postnatal survival.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mce.2010.12.005DOI Listing

Publication Analysis

Top Keywords

pomc null
16
null mutants
12
early postnatal
12
corticosterone levels
12
null mutant
12
homozygous null
8
postnatal stages
8
hours birth
8
birth pomc
8
born heterozygous
8

Similar Publications

The neurons of the melanocortin system regulate feeding and energy homeostasis through a combination of electrical and endocrine mechanisms. However, the molecular basis for this functional heterogeneity is poorly understood. Here, a voltage-gated potassium (Kv) channel named KCNB1 (alias Kv2.

View Article and Find Full Text PDF

Inactivating mutations in the melanocortin 4 receptor () gene cause monogenic obesity. Interestingly, female patients also display various degrees of reproductive disorders, in line with the subfertile phenotype of MC4RKO female mice. However, the cellular mechanisms by which MC4R regulates reproduction are unknown.

View Article and Find Full Text PDF

Genomics, Transcriptomics, and Epigenetics of Sporadic Pituitary Tumors.

Arch Med Res

December 2023

Endocrine Research Unit, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.

Pituitary tumors (PT) are highly heterogeneous neoplasms, comprising functioning and nonfunctioning lesions. Functioning PT include prolactinomas, causing amenorrhea-galactorrhea in women and sexual dysfunction in men; GH-secreting adenomas causing acromegaly-gigantism; ACTH-secreting corticotrophinomas causing Cushing disease (CD); and the rare TSH-secreting thyrotrophinomas that result in central hyperthyroidism. Nonfunctioning PT do not result in a hormonal hypersecretion syndrome and most of them are of gonadotrope differentiation; other non-functioning PT include null cell adenomas and silent ACTH-, GH- and PRL-adenomas.

View Article and Find Full Text PDF

Identification of MRAP protein family as broad-spectrum GPCR modulators.

Clin Transl Med

November 2022

Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Background: The melanocortin receptor accessory proteins (MRAP1 and MRAP2) are well-known endocrine regulators for the trafficking and signalling of all five melanocortin receptors (MC1R-MC5R). The observation of MRAP2 on regulating several non-melanocortin G protein-coupled receptors (GPCRs) has been sporadically reported, whereas other endogenous GPCR partners of the MRAP protein family are largely unknown.

Methods: Here, we performed single-cell transcriptome analysis and drew a fine GPCR blueprint and MRAPs-associated network of two major endocrine organs, the hypothalamus and adrenal gland at single-cell resolution.

View Article and Find Full Text PDF

The kinome, cyclins and cyclin-dependent kinases of pituitary adenomas, a look into the gene expression profile among tumors from different lineages.

BMC Med Genomics

March 2022

CONACyT-Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, D.F. 06720, Mexico, Mexico.

Background: Pituitary adenomas (PA) are the second most common intracranial tumors and are classified according to hormone they produce, and the transcription factors they express. The majority of PA occur sporadically, and their molecular pathogenesis is incompletely understood.

Methods: Here we performed transcriptome and proteome analysis of tumors derived from POU1F1 (GH-, TSH-, and PRL-tumors, N = 16), NR5A1 (gonadotropes and null cells adenomas, n = 17) and TBX19 (ACTH-tumors, n = 6) lineages as well as from silent ACTH-tumors (n = 3) to determine expression of kinases, cyclins, CDKs and CDK inhibitors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!