Polycyclic aromatic hydrocarbons (PAH) are among the likely major causative agents for lung cancer in smokers. PAH require metabolic activation to exert their carcinogenic effects, and one important pathway proceeds through a three-step sequence resulting in the formation of diol epoxides, which react with DNA to produce adducts that can cause mutations and initiate the carcinogenic process. However, no previous published studies have examined this critical pathway in humans specifically exposed to PAH by inhalation of cigarette smoke. This study used a unique approach employing a stable isotope derivative of phenanthrene, the simplest PAH with a bay region, a feature closely associated with PAH carcinogenicity. Twelve subjects each smoked a cigarette to which [D(10)]phenanthrene had been added. Plasma was analyzed for [D(10)]r-1,t-2,3,c-4-tetrahydroxy-1,2,3,4-tetrahydrophenanthrene ([D(10)]PheT), the major end product of the diol epoxide metabolism pathway of phenanthrene. The analysis was performed by gas chromatography--negative ion chemical ionization--tandem mass spectrometry, using [(13)C(6)]PheT as internal standard. The results demonstrated that the three-step pathway resulting in the formation of diol epoxides, as monitored by [D(10)]PheT, occurred with remarkable rapidity. Levels of [D(10)]PheT in plasma of all subjects were maximal at the earliest time points examined, 15-30 min after smoking the cigarette containing [D(10)]phenanthrene, and decreased thereafter. These results demonstrate that the formation of a PAH diol epoxide occurs rapidly in smokers. Because PAH diol epoxides are mutagenic and carcinogenic, the results clearly demonstrate immediate negative health consequences of smoking, which should serve as a major warning to anyone contemplating initiating tobacco use.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3042042PMC
http://dx.doi.org/10.1021/tx100345xDOI Listing

Publication Analysis

Top Keywords

diol epoxides
16
polycyclic aromatic
8
smokers pah
8
formation diol
8
cigarette [d10]phenanthrene
8
diol epoxide
8
pah diol
8
pah
7
diol
6
consequences cigarette
4

Similar Publications

This study aimed to assess the effects of a diet containing 20.8 mg FB1 + FB2/kg over four and nine days on oxylipin (OL) profiles in the liver and brain of chickens. A total of 96 OLs, derived from seven polyunsaturated fatty acids (PUFAs) via the cyclooxygenase (COX), lipoxygenase (LOX), cytochrome P450 (P450), and non-enzymatic pathways, were measured using HPLC-MS/MS.

View Article and Find Full Text PDF

BPDE induces ferroptosis in hippocampal neurons through ACSL3 suppression.

Neurotoxicology

January 2025

Department of Health Toxicology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; Shanxi Key Laboratory of Aging Mechanism Research and Translational Applications; Center of Healthy Aging; School of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi 046000, China. Electronic address:

Benzo(a)pyrene (B[a]P) and its ultimate active metabolite, benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), are known to have neurotoxic effects that can damage hippocampal neurons and cause cognitive impairments. Ferroptosis, a form of programmed cell death distinct from apoptosis, is associated with multiple neurodegenerative conditions. Recently, we have found that BPDE triggers ferroptosis in hippocampal neurons, though the underlying molecular mechanism remains unclear.

View Article and Find Full Text PDF

Benzo[a]pyrene exposure and incident risks of digestive system cancers: Insights from nested case-control studies and adverse outcome pathway network analysis.

J Hazard Mater

January 2025

Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China. Electronic address:

Benzo[a]pyrene (B[a]P) is a recognized carcinogen for lung cancer, but its associations with digestive system cancers (DSCs) remain unclear and the common carcinogenic mechanisms are not fully understood. We conducted five nested case-control studies within the Dongfeng-Tongji cohort, including esophageal (EC, n = 58), gastric (GC, n = 103), colorectal (CRC, n = 220), hepatic (HC, n = 117), and pancreatic cancers (PC, n = 45). For each case, two sex and age ( ± 5 years) matched healthy controls were selected.

View Article and Find Full Text PDF

Wintering loons in South Korea face an ongoing threat from polycyclic aromatic hydrocarbons: Shifting sources and potential DNA damage.

Environ Pollut

January 2025

Department of Biological Sciences, College of Natural Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea. Electronic address:

Diving birds, particularly those sharing coastal habitats with fishing grounds, are at risk from oil pollution. Despite documented cases of bird mortality, the specific role of oil pollution in these death remains unclear. To address this knowledge gap, this study examined polycyclic aromatic hydrocarbon (PAH) contamination, its sources, and its impact on loon health.

View Article and Find Full Text PDF

Synthesis, crystal structure and absolute configuration of (3a,4,5,7a)-7-(but-3-en-1-yn-1-yl)-2,2-dimethyl-3a,4,5,7a-tetra-hydro-2-1,3-benzodioxole-4,5-diol.

Acta Crystallogr E Crystallogr Commun

October 2024

Cryssmat-Lab, Cátedra de Física, DETEMA, Facultad de Química, Universidad de la República, Av. General Flores 2124, CP 11800, Montevideo, Uruguay.

Article Synopsis
  • The absolute configuration of the compound CHO was determined and confirmed through single-crystal X-ray diffraction.
  • CHO serves as an important intermediate for synthesizing speciosins, epoxy-quinoides, or their analogues.
  • The molecular structure features fused five- and six-membered rings with hydroxyl groups, and its packing is influenced by hydrogen bonds and van der Waals interactions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!