Motor neuroscience is well over 100 years old, with seminal work such as G. T. Fritz and E. Hitzig's discovery of motor cortex occurring in 1870. Theoretical motor neuroscience has been ongoing for at least the last 50 years. How mature a scientific discipline is motor neuroscience? Are experimentalists and theoreticians working together productively to help the field progress? This article addresses these questions by advancing the following theses. Motor neuroscience remains at a descriptive stage due to the incredible complexity of the problem to be solved. The proliferation of models--and distinct modeling camps--stems from the absence of unifying conceptual constructs. To advance the field, theoreticians must rely more heavily on the concept of falsification by producing models that lend themselves to clear experimental testing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/00222895.2010.529332 | DOI Listing |
Neuroimage
January 2025
Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA. Electronic address:
Noninvasive brain stimulation of the primary motor cortex has been shown to alter therapeutic outcomes in stroke and other neurological conditions, but the precise mechanisms remain poorly understood. Determining the impact of such neurostimulation on the neural processing supporting motor control is a critical step toward further harnessing its therapeutic potential in multiple neurological conditions affecting the motor system. Herein, we leverage the excellent spatio-temporal precision of magnetoencephalographic (MEG) imaging to identify the spectral, spatial, and temporal effects of high-definition transcranial direct current stimulation (HD-tDCS) on the neural responses supporting motor control.
View Article and Find Full Text PDFJ Affect Disord
January 2025
Centre for Clinical Neurosciences, McMaster University, Canada; Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada; Mood Disorders Treatment and Research Centre and Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, ON, Canada. Electronic address:
Background: Neurofilament light chain (NfL) is a cytoskeletal protein that supports neuronal structure. Blood NfL levels are reported to be higher in diseases where myelin is damaged. Studies investigating intracortical myelin (ICM) in bipolar disorder (BD) have reported deficits in ICM maturation over age.
View Article and Find Full Text PDFNeuroscience
January 2025
Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, AZ, 85013, USA. Electronic address:
Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by motor symptoms such as tremors, rigidity, and bradykinesia. Magnetic resonance imaging (MRI) offers a non-invasive means to study PD and its progression. This study utilized the unilateral 6-hydroxydopamine (6-OHDA) rat model of parkinsonism to assess whether white matter microstructural integrity measured using advanced free-water diffusion tensor imaging metrics (fw-DTI) and gray matter density using voxel-based morphometry (VBM) can serve as imaging biomarkers of pathological changes following nigrostriatal denervation.
View Article and Find Full Text PDFActa Neurol Belg
January 2025
Department of Neurology, National Institute of Mental Health & Neurosciences, Bangalore, 560029, India.
Background: Neuromyelitis optica spectrum disorder (NMOSD) is a relapsing central nervous system disease most commonly associated with aquaporin-4 antibodies (AQP4-Ab) and Myelin oligodendrocyte glycoprotein (MOG) antibodies. These demyelinating disorders influence cortical excitability, which has been studied using advanced imaging techniques and transcranial magnetic stimulation (TMS) in our study.
Methods: This is a prospective study of 30 subjects.
Nat Commun
January 2025
Department of Neuroscience, Erasmus MC, Westzeedijk 353, 3015 AA, Rotterdam, the Netherlands.
Precise temporal control of sensorimotor coordination and adaptation is a fundamental basis of animal behavior. How different brain regions are involved in regulating the flexible temporal adaptation remains elusive. Here, we investigated the neuronal dynamics of the cerebellar interposed nucleus (IpN) and the medial prefrontal cortex (mPFC) neurons during temporal adaptation between delay eyeblink conditioning (DEC) and trace eyeblink conditioning (TEC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!