The photosynthetic bacterium, Rhodospirillum centenum, has a flexible life cycle that permits it to survive starvation as dormant cyst cells. Previous studies have identified some of the key regulators for encystment and demonstrated that the control of development is intricate. This complexity may arise from the need to integrate several environmental signals to mediate a switch from one mode of energy metabolism to another and to ensure that a transition to dormancy is initiated only when necessary. We searched for additional regulators of development by screening for encystment deficient strains after subjecting wild type R. centenum to mini-Tn5 mutagenesis. Analysis of "hypo-cyst" strains led to the identification of two genes that encode putative hybrid histidine kinases (cyd1 and cyd2). Cells with deletions of either gene fail to form cysts under conditions that normally induce development. Furthermore, the deletion strains exhibit altered swarming behavior suggesting that Cyd1 and Cyd2 affect behaviors utilized when the organism is attached to a substrate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00203-010-0664-7 | DOI Listing |
Int J Mol Sci
January 2025
School of Biology and Biological Engineering, South China University of Technology, University Town, Guangzhou 510006, China.
Prostate cancer is one of the most common malignancies affecting men worldwide and a leading cause of cancer-related mortality, necessitating a deeper understanding of its underlying biochemical pathways. Similar to other cancer types, prostate cancer is also characterised by aberrantly activated metabolic pathways that support tumour development, such as amino acid metabolism, which is involved in modulating key physiological and pathological cellular processes during the progression of this disease. The metabolism of several amino acids, such as glutamine and methionine, crucial for tumorigenesis, is dysregulated and commonly discussed in prostate cancer.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China.
Background: Starch is the most abundant carbohydrate in maize grains, serving as a primary energy source for both humans and animals, and playing a crucial role in various industrial applications. Increasing the starch content of maize grains is beneficial for improving the grain yield and quality. To gain insight into the genetic basis of starch content in maize kernels, a multiparent population (MPP) was constructed and evaluated for starch content in three different environments.
View Article and Find Full Text PDFNat Commun
January 2025
NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
Membrane bound histidine kinases (HKs) are ubiquitous sensors of extracellular stimuli in bacteria. However, a uniform structural model is still missing for their transmembrane signaling mechanism. Here, we used solid-state NMR in conjunction with crystallography, solution NMR and distance measurements to investigate the transmembrane signaling mechanism of a paradigmatic citrate sensing membrane embedded HK, CitA.
View Article and Find Full Text PDFUnlabelled: Bacterial genomic mutations in have been detected in isolated resistant clinical strains, yet their mechanistic effect on the development of antimicrobial resistance remains unclear. The resistance-associated regulatory systems acquire adaptive mutations under stress conditions that may lead to a gain of function effect and contribute to the resistance phenotype. Here, we investigate the effect of a single-point mutation (T331I) in VraS histidine kinase, part of the VraSR two-component system in VraSR senses and responds to environmental stress signals by upregulating gene expression for cell wall synthesis.
View Article and Find Full Text PDFMol Med
January 2025
Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
Background: A close relationship exists between castration-resistant prostate cancer (CRPC) and histidine metabolism by gut microbes. However, the effects of the histidine metabolite imidazole propionate (IMP) on prostate cancer (PCa) and its underlying mechanisms are not well understood.
Methods: We first assessed the effects of IMP on cell proliferation and migration at the cellular level.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!