Donor-acceptor blends based on conjugated polymers are the heart of state-of-the-art polymer solar cells, and the control of the blend morphology is crucial for their efficiency. As the film morphology can inherit the polymer conformational state from solution, the approaches for probing and controlling the polymer conformational state in the blends are of high importance. In this study, we show that the macromolecular dynamics in solutions of the archetypical conjugated polymer, MEH-PPV, is essentially changed upon addition of an acceptor 2,4,7-trinitrofluorenone (TNF) by using dynamic light scattering (DLS). We have observed four new types of the macromolecular dynamics absent in the parent polymer determined by the polymer and acceptor content. The MEH-PPV : TNF ground-state charge-transfer complex (CTC) is suggested to result in these dynamics. In the dilute polymer solution, the CTC formation leads to slower dynamics as compared with the pristine polymer. This is evidence of aggregates formed by intercoil links that are the CTCs involving two conjugated segments of different coils with acceptor molecules being sandwiched between them. At low acceptor content, the aggregates are not stable but at high acceptor content, they are. In the semidilute solution at low acceptor content, the dynamics becomes faster as compared with the pristine polymer that is explained by confinement of the coupled motions of entangled polymer chains. At high acceptor content, the dynamics is far much slower with a characteristic long-range correlation at the scale 3-5 μm that is explained by aggregation of polymer chains in clusters. One can expect that the DLS technique could become a useful tool to study the nano- and microstructure of donor-acceptor conjugated polymer blends to achieve controllable morphology in the corresponding blend films.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c0cp01710hDOI Listing

Publication Analysis

Top Keywords

acceptor content
20
polymer
13
macromolecular dynamics
12
conjugated polymer
12
donor-acceptor blends
8
polymer conformational
8
conformational state
8
compared pristine
8
pristine polymer
8
low acceptor
8

Similar Publications

Redox enzymes, mostly equipped with metal or organic cofactors, can vary their reactivity with oxygen by orders of magnitudes. Understanding how oxygen reactivity is controlled by the protein milieu remains an open issue with broad implications for mechanistic enzymology and enzyme design. Here, we address this problem by focusing on a widespread group of flavoenzymes that oxidize phenolic compounds derived from microbial lignin degradation, using either oxygen or a cytochrome c as electron acceptors.

View Article and Find Full Text PDF

Disaccharide trehalose has been proven in many cases to be particularly effective in preserving the functional and structural integrity of biological macromolecules. In this work, we studied its effect on the electron transfer reactions that occur in the chromatophores of the photosynthetic bacterium . In the presence of a high concentration of trehalose, following the activation of the photochemistry by flashes of light, a slowdown of the electrogenic reactions related to the activity of the photosynthetic reaction center and cytochtome (cyt) complexes is observable.

View Article and Find Full Text PDF

Antimicrobial Effectiveness of L. Leaf Extracts Prepared in Natural Deep Eutectic Solvents (NaDESs).

Antibiotics (Basel)

November 2024

Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babeș, Street, 400012 Cluj-Napoca, Romania.

Background: Blackcurrant ( L.) leaves are valuable sources of bioactive compounds, including phenolic acids, flavonoids, and tannins, which contribute to their potent antioxidant, anti-inflammatory, and antimicrobial properties.

Objectives: The overall aim of this study was to investigate the antimicrobial potential of extracts rich in bioactive compounds from blackcurrant leaves prepared in natural deep eutectic solvents (NaDESs).

View Article and Find Full Text PDF

Ultrasensitive dual-mode biosensor for photoelectrochemical and differential pulse voltammetry detection of thrombin based on DNA self-assembly.

Biosens Bioelectron

January 2025

Hebei Key Laboratory of Nano-Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China. Electronic address:

Abnormal levels of thrombin may be associated with various diseases, such as thrombosis and hemorrhagic diseases, making precise detection of thrombin particularly important. Dual signal detection is a method that enhances detection sensitivity and specificity by simultaneously utilizing two different signals. Its primary advantages include improving detection accuracy and reducing false positive rates, making it particularly suitable for clinical analysis and diagnostics.

View Article and Find Full Text PDF

A novel Gram-negative, motile, rod-shaped bacterium, designated 4137-cl, was isolated from a thermal spring of North Ossetia (Russian Federation). Strain 4137-cl grew at 30-50 °C (optimum 42 °C) with 0-3.5% NaCl (optimum 0-0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!